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We saw in the last session how the physical properties of solids depend rather strongly 

on this symmetric properties; however there is 1 class of solids in which the details in the 

lattice structure does not play a very big role on the physical properties, these are metals 

such as gold silver copper and so on. This metals their behavior can be understood on the 

assumption that each atom donates in the case of mono valid metal one-electron to the 

metal, and this electron is usually the outermost 1 in the metal atom.
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For example, in the case of sodium which has an atomic number atomic number is the 

number of electrons of leaven z is the usual symbol. There are leaven electrons in the 

sodium atom of which 10 of them go into this so-called 1 s 2 electrons go into 1 s shell

and then 2 electrons go into the 2 s shell and then six electrons go into the 2 p sell. So, 

this is the so-called close shell structure out of these leaven.

Electrons ten of them go into the close shells leaving only one-electron in the outermost 

three s shell. So, this the electron which is the outermost in the metal atom this is just an 

example similarly 1 can look at any metal atom and then analysis the outermost electron 

is available for conduction, because it is rather weekly bound to the parent atom and 

therefore, can be ionized rather readily. And this becomes this outermost electron is 

known as the conduction electron because this gets ionized and this electron becomes 

available and is free to wander around inside the metal. So, it is the very much like the 

atoms and molecules in an ideal guess.

So, one speaks of an electron gas in this case. So, this means that even though the metal 

is the conduction this system a condensed matter a solid, but the electrons inside are 

behaving very much like the atoms. And molecules in an ideal gas be one made ask what 

happens to the coulomb repulsion between the 2 electrons pars of electronics this intel 

electron repulsion is rather week in comparison to the attraction between the electrons 

and the positive ions which are left behind after the ionization. So, 1 has 1 neglects the 



first approximation inter electron are coulomb repulsion. If overlooked ignore to start 

with. So, that one can think of free electrons which are not strongly interacting free 

electron for free in the sense that the free-for conduction to carry electricity insight, that 

is why metals are such good conductors of electricity only thing is these electrons the 

ideal gas molecules are atoms are classical particles.

(Refer Slide Time: 05:32)

Whereas electrons are quantum particles which obey electrons are known as fermions

fermions means they obey so-called for me the dirac statistics rather than not Maxwell 

Boltzmann statistics. So, there collective behavior is not describe by classical Maxwell 

Boltzmann the statistics which are which is obey it by ideal gas molecules and atoms, but 

in then we discuss the properties of this electron gas we have to take count of the fact 

that they obey fermi dirac statistics. So, we have to use fermi dirac statistics in order to 

describe.
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They are collective behavior this is are other important factor up the fermi direct 

distribution function I will write it as a f t for short the fermi direct distribution function

as the following firm f of e that is the distribution function which describes how the 

electrons are distributed into the various energy states. So, this system of electrons has 

different energy levels the electron energies are different. And therefore, the electrons 

occupy these energies and the way we are distributed energy is given by this function 1

by a exponential e by the e f by kb t plus 1, where kb is the Boltzmann constant and the e 

f is known as the fermi energy k b is the universal constant as you know. And the fermi 

energy is a characteristic of the metal now everything will depend the collective behavior 

will depend on the statistical distribution how the electrons are distributed an energy.
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Therefore let us look at how this function looks, this function is plotted in this figure.
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Let us look at the figure on the left side, which gives the value this function plotted at 

absolute 0 lets discussed the behavior of the metal at absolute 0 and then we can go to 

finite temperatures this simpler. So, you can see that this function looks like this. So, if I

as the fermi energy here than this is 0 this is one. So, that is the behavior of this function 

at absolute 0. So, this is at 0 k what is this there the physical meaning of this picture is 

that if you look at all state's all energies which are less than the fermi energy. If you look 



to the left that this ef in the graph on the energy access all this states are occupy with a 

probability of unity. In the sense that this mean that they are fully occupied the states are 

all completely occupied by the electrons none of the state's is empty all the states below e 

f are all occupy by electrons this. Whereas all the state above ef the fermi energy are 

completely empty they have 0 probability the f of e is 0.

So, the probability of occupation of the state about the fermi energy at absolute 0 is 0

that mean that they are completely an occupy. This is because the electron obey what is 

known as Pauli is crucial principle that is way they are fermions this means that it if 1

state are 1 energy level is occupied by an electron then another electron cannot be found 

in the same state it is excluded from occupying the same state. So, each state is occupied 

by an electron, and you have all the states below e f occupy well this picture is slightly 

modified at finite temperature, but we will come to that a little latter the it is this is 

enough for as…
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Now, So, if this is. So, at 0 kelvin the fermi level e f is the highest occupied state now of 

course, then I say that each state is occupied by one-electron according to the Pauli 

principle what I mean is that we do not consider this spin of electron if you consider the 

spin of the electron. Then we know that electron can have has a spin of half and. So, can 

occupied 2 states with parlor or anti parallel spin beer given direction in space therefore, 

these 2 electrons with opposite spins both have the same energy. And so each of the



states can be occupied by through electrons with opposite spins without violating only 

principle.
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You will remember this, but this spatial energy of these electron is simply given by the 

kinetic energy, which is h cross square k square by 2 m there h cross is h by 2 pi h is the 

planck’s k is the wave number which is equal to 2 pi by lambda we already talked about 

lambda broglie wavelength. And m is the mass the electron. So, the energies of the 

electron in the state is given by the wave vector k, and this is just the kinetic energy h 

cross square k square by 2 m.
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Now, if we why do we need this we need this information united calculatefor example, 

the number of electrons conduction electrons inside a metal the metal is now somewhat 

like a box with in which this electron gases free to wonder around, but the electron is not 

a allow to escape out of the better. So, that is a the only constraint on the electrons. So, 

within the metal they are free to wander around very much like the atoms and molecules 

of a gas.
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So, next we should to calculate the concentration of electrons which is the number of 

electrons for unit volume can I say electron I only mean the conduction electrons in order 

to find this t we have to also consider in addition to the distribution function. We have to 

consider what is known as the density of states this is because the distribution function 

tells us how the electrons are distributed in the energy, but as you can see from this 

equalization connecting the energy and the wave vector are the wave number it is the 

wave number which decides that the electrons state.

So, we want to also know how the hold me a conduction electrons are distributed 

indifferent states corresponding to a given energy. So, this is given by what is known as 

the density of states. So, it tells us how many states are available in a differentia energy 

interval agents to a given energy. So, if I look at a particular energy. So, I would loot 

look at an infinite this month d e around a given energy. So, if I take this infinity dismal 

energy interval we d f e is the density of a state function which described the d f e d e 

gives the the number of steps in this energy interval.

(Refer Slide Time: 17:18)

So, we wish to find out this density of states together the distribution function ff e and 

the density of the state function d f e d e together will determine the average this 

statistical properties are this electron gas how do you find this density of states function

we will just discuss this next.



(Refer Slide Time: 17:43)

So, we have we know that the energy is just p-square by 2 m because the electron have 

only kinetic energy. So, d e is p d p by m now if I look at the momentum space and if I

regard the fermi energy as corresponding to a value which corresponds to an isotropic 

fermi surface which means it is fermi surface. So, it is the spear with radios e f in energy 

space. So, that is the fermi spear and all the inside state inside this or occupy by electron 

gas. So, we know that radios the volume of this will differential volume is four pi p 

square d p.

This is the differential volume in momentum space position and momentum together 

define a state in statically physics. So, this is the differential volume in momentum space 

if we take the number. Now, we count the number or state in this interval by writing d f e 

d e e equals v the actual volume in real physical space the position space multiplied by 

the differential volume in momentum space times 2 the factor 2. In order to take it 

account this spin and divide this by the volume of f s cell in phase space sell means state

each cell each of the cell correspond to 1 state of the electron as we discussed already

according to the pauli principle.

Now, this volume of a cell in phase space is given by the so-called uncertainty principle 

in quantum mechanics as I already told you the electrons are quantum particles. So, we 

have discussed as statistical behavior according to the quantum statistics and fermi dirac 

statistics is a quantum statistics. Now the main feature of quantum behavior comes from 



the so-called uncertainty principle due to Haisonbag this principle states that the product 

in uncertainties of position. And momentum is of the order of the planks constant and 

therefore, this is in 1 by mention therefore, we can write the volume of a cell in phase 

space as the product of the uncertainty you cannot look it a particle beyond this accuracy 

in quantum mechanics. So, this is the minimum uncertainties.

So, this is the spatial and momentum, extent the extension in space and a real space and 

momentum is given is order of the planks constant. So, if we use the same argument for 

all the three dimensions and in real space and all the three components of linear 

momentum then they get this volume is h cube this is h for each dimensions. So, there 

are three dimensional. So, each time it is multiplied. So, get h cube and that is the 

uncertainty to which you can locate a given state in phase space in quantum mechanics 

therefore, that corresponds. So, this space the phase space is quantum mechanics is 

course grain and this is the volume occupied by a a state in phase space. So, you derive 

the total volume available physical volume v times the differential volume in momentum 

space times the factor 2 due to spins state and divide the whole thing by h cube.
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That will give the number are state which is intern to the given by d f e d e. So, this gives 

as the way to calculate density of state function therefore, we just substitute p square is 

just 2 m e.
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So, 4 pi. So, p is 2 m e to the power half. So, here I have p square d p which I can write 

as p times p d p p d p already I have as m d e. So, 2 m e to the power half times m p e

therefore, substituting here d f e d e 2 v into four pi into p square d p which is here to m e 

to the power half into m d e pi h cube. So, this some simplification gives you the density 

of space function as four pi v.

(Refer Slide Time: 24:36)

So, you can see that this is the density of state function which is plotted these together.

So, you can see the density of state goes as e power half.
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Now, we have a all the we have developed all the things that we need 2 evaluate the 

electron concentration at 0-kelvin let us do this now.
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So, the number of electrons in unit volume is the total number divided by volume and 

that will be the total is what is given by this. So, I have 1 by integral of e f of e d e comes

0 to e f this is because of ff e gives you how the electrons are distributed in energy. And

d f e gives you use you how the energies are distributed at in states and therefore, the 

product of these 2 integrated over an energy interval from 0 to fermi energy up to the all 



states are completely occupied rest of them are completely empty. So, it is enough if I

integrated over all the energies from 0 to e f let me write e f at 0 in order to remind 

ourselves of the fact, that we have calculating it at 0 kelvin. So, if I substituted the this 1

by b 0 to e f, then I have this four pi v into 2 m to the power three by 2 by h cube e power 

half d e and I have removed f of e because this is going to be 1 for all the states. So, it is 

going to have a value 1 at absolute 0.
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So, we can write all these constants can be back out v cancels for 4 pi 2 m to the power 3

by 2 by h cube e f 0 to the power 3 by 2 into 2 by 3 as a result of integration.
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So, that gives me final result as using this and using ef as we already saw e f is nothing,

but the kinetic energy up to the wave vector at fermi energy h cross square k f square by

2 m therefore, we get n s. So, that gives you rather compact relationship between the 

fermi wave vector at absolute 0 and the electron concentration n now me assume that 

because for example, in a metal like sodium each atom donates 1 electron to the 

conduction band. So, if we have a moral a gram atom of this solid then this will contain 

as is well known and number of atoms. So, that correspond to the number of electrons 

donate at a conduction electron and do not donated.
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So, if you take number and divide by the atomic wait.
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So, that gives me in 1 gram atom are kilogram atom correspond to n a number of atoms 

and I have each atom gives you 1 electron in a monatomic solid. So, this is the number of 

electrons. So, this correspond to your weight of a where this is atomic weight therefore, 

the number of electron is just in 1 mole is n a by a times.
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They have to we are forgetting the fact that we have also row because it this gives you 

the number half electrons per unit mass, and then we have to multiply this by the density.



So, we can calculate n and therefore, calculate the fermi wave vector and inurn the fermi 

energy. So, we have way of calculating the fermi energy from this formula.
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So, the fermi energy values calculated in this way are also shown in the table. So, the 

fermi energy at 0 kelvin the values are given in an electron volt which is a convenient 

unit in a the case of atomic physics. This gives you the energy of an electron when is 

accelerated through a potential of 1 volte, now the various metals aluminum copper gold 

potassium silver sodium.
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You can see the fermi energy the various from something like eleven points six electron 

volts to the three-point to electron volts in any case all of the order of electron volts. So, 

this is a very important idea because if you converted by using Boltzmann constant to 

equal intemperate this will be a the order of ten to the power of four kelvin. So, a very 

high temperature. So, the energies the fermi energy corresponds to be a very high 

temperature the corresponding temperature in temperature units. Now we will use these 

concepts to calculate an important thermal property namely be electronic specific heat

this means that this electron gas, if you inject some heat and energy into it they electron 

absorbs this energy. And that temperature goes up though these this specific heat is 

defined as the rate of change of the mean internally energy of the conduction electron at

0 k with respect to temperature.
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So, the electronic specificate can be calculated that by calculating the average energy of 

this electron gas which is simply done by again at absolute 0. This is done by integrating 

from 0 to e f 0 of e d f e f f e d e by 0 to e f 0 of e f e f of e d. So, this gives going by the 

same procedure they arrive at the result this is three fifth of e f 0.
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The average energy is three fifth of fermi energy at absolute 0 now the electronics 

specific heat having got the average energy, we can simply differentiate this expression 

fermi energy with respect to temperature that gives you the electronic specific heat. Now 

we will first qualitatively see what kind results that we are going to get or this calculation

the electronic specific heat, since we said that the e f 0 is the order of ten to the power 

four kelvin in temperature units.

So, if you thermal exited usually thermal excitation is at best of the order of hundred 

kelvin. So, it is a very small if you go back to the energy distribution this is e f 0 if you 

go back to this this is of the order of this in temperature e units is that the the order of ten 

thousand kelvin, but our energy excitations thermal energy excitation is only at the order 

of a hundred kelvin. So, it is small temperature window. So, the exhibition is going to 

shift states from this to this, but the state's are all remember that they are all completely 

occupied and are subject to the electron for subject pauli is crucial that mean if state is 

completely occupying already you can put another electron.

So, this exhibition from this one occupy state to another occupy state in this whole range 

is not going to be possible even though you give with excitation, the electrons cannot be 

exited fermi occupied state here into another occupied state which is not empty. So, this 

is only pass only at this edge this is not possible and the thermal exhibition is one only 



possible here here. So, this is of the order of ten to the power four Kelvin, and this is 

order of ten square. So, this is only possible across this fermi energy if it bring it here.

So, it can excite across in to 1 of the empty state here. So, only the a fraction of the 

electron which occupy a stated within this ten hundred kelvin in the neighborhood of the 

fermi energy only they will be able to get excited. So, what is this fraction they are k b t

by k b t r k b t f corresponds to all the states the electrons not the energy scale and 

response b t corresponds to the energy of the thermal excitation.

So, this is the fraction which is t by t f that is the fraction of electrons excited exited 

thermally and each of them has an exhibition of order of k b t therefore, the excitation 

energy is as the order of k b t square by t f, so d by d t I of this use this specific. So, these 

are the order of k b t. So, this tells me that the electronic specific is the order of k b t it is 

proportional to the temperature t. So, the electronic heat capacity r c e electronic specific 

heat is plus equal to the constant times the temperature. So, that is the basic results that 

we get for the electronic specific heat of the conduction electronic gas, so you get this is 

the value at absolute 0.
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So, this is shown graphically. So, in figure of course, you will never be able to measure 

the electronic heat capacitance alone it will be also the specific with includes the 

contribution from the electron. And also from the lattice of ions are the atoms in the solid 

and that as we will see later is given by the may be theory specificate and that 



temperature depend is a t q dependence. So, the overall behavior is given off by a 

relation of this time c total and therefore, if you brought c by t verses p-square that would 

be a straight line that is what is shown in figure. So, from the intercept of this we can get 

the heat capacity question gamma, we have discussed everything at absolute 0, but the

question arises w what happens? Then you have an electron at a finite temperature the 

this the bit more difficult to calculate, we will not go through the details at this 

calculation here, but I will just roughly.
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It what happens by looking at the distribution function. So, at a finite temperature the 

fermi dirac distribution function this at a finite temperature which is not 0. So, the 

distribution function, now deviate from the behavior at absolute 0, this is at 0 kelvin as 

we have already seen, and at finite temperature, this reduces to something like this. That 

is the behavior here at the not equal to 0 at any finite temperature it the f f e decreases 

from the value 1 to something like of fermi energy. And then it goes on beyond it is non-

zero even beyond the ef this means that some of this state or empty even before even 

below the fermi energy, and some on the state or above the fermi energy are occupy and 

these the number occupied states goes on increasing.

So, this is the behavior and this will modify the fermi energy the fermi energy will be a

function of temperature. Now and the heat capacity equation which is still found to be a 

linear function of temperature, but but the constant the linear heat capacity question is 



slightly different. We will not calculate this this is the overall behavior now electron gas 

also processes many other interesting properties the electron have a magnetic moment 

because that that is been and this contributes to magnet. So, this is known as Pauli 

paramagnets or this is a spin susceptibility this is the magnetic susceptibility which arises 

from the fact that the electron Aspin’s, and therefore a magnetic moment. So, this is 

another important characteristic of the conduction electron gas in metals in addition the 

metals most important characteristic is that metal is a very good contact to have 

electricity. Now we would like to have an expression far the electrical conductivity of a 

metal.

And how it depends on for example, temperature and not only the electrical conductivity 

the a metal is also a good conductor of heat. So, we would like to know how the thermal 

conductivity is determined by the behavior electron gas, we also know that there is such 

a thing called thermo electric power the phenomenon the thermo electricity in which 

metal junction used in order to produce the thermo electricity and e m f. So, we would 

also like to know how the thermoelectric power of a good conductor is determined by the 

behavior the electron gas these are things we will discuss in next lecture.
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Now, we will move on to some questions relating to electrons in solids, the free electrons 

in metals in particular.
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The problem that we will discuss is we are asked to calculate the Fermi energy of sodium 

at 0 k, where given the density of sodium is 970 kilograms per meter cube, and the 

atomic weight is 23 as we know. We know that the basic expression for the Fermi energy 

is h square by 8 m into n by pi to the power 2 by 3, where n is the electron concentration,

3 n by pi.
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So, we are required to find n for which we take the density and divide by the atomic 

weight and multiplied by Avogadro number. And that the density and the atomic weight 

are given here, Avogadro number is known the result of this calculation is 2.54 into 10 to 

the power 28 electron per meter cube. We are assuming that is in sodium is monovalant

that this is really the number of atoms per in unit value and assuming that each atoms 

donates one conduction electron, we get the number of electrons per unit volume as this.
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And therefore, substituting this value of n, we get the Fermi energy as 3.13 electron volts

this is a just a question of substituting this expression is. So, that is the Fermi energy of 

sodium at zero Kelvin.
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In the next problem, we again deal with sodium we are asked to find the energy level in 

sodium at absolute zero, no, not at absolute zero.
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But probability of occupation of this energy level at a temperature of 300 Kelvin is 0.5.

Energy level whose probability of occupation since here from given the result of the 

previous problem that E f the Fermi energy at zero k is at 3.13 electron volts. For this we 

go back to the Fermi Dirac distribution function which finite temperatures as they form 

like this, we have discussed all these already. So, that is the shape of Fermi Dirac 

distribution function and therefore, we know that the probability of occupation at 300 k

becomes half exactly at the Fermi level.
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So, we can find this we can readily see that this has to be at an energy of 3.13 electron 

volts.

(Refer Slide Time: 05:23)

This is true in general of all metals. The value of half for the probability of half 

occupation occurs at the Fermi energy. In the same way, we can find the values energy at 

which the probability of occupation becomes for example, 0.75.
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So, that is the second question we have to find. So, substituting 0.75 equal to 1 by

exponential e minus 3.13 by k B into 300 plus 1 substituting in this we can readily see 

that the E happens to be something like 3.10 electron volts.
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And that would be this is 3.13, and this will be somewhere here 3.10 electron volts in 

which we have a probability of occupation of 0.75. The next question concerns the same 

value for energy level for which the probability is 0.25.
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And for following same procedure, we find the corresponding energy is 3.16 electron 

volts. In other words, we have the Fermi tail here and it is slightly above the Fermi level 

this is 3.16 electron volts and that is where the probability reduces further from 0.5 to 

0.25, but still it is non-zero. So, states here are occupied with a probability of one-fourth.

(Refer Slide Time: 07:29)

The next problem is about the chemical potential in two dimensions are at any 

temperature for the electron gas.
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And we are required to prove this is the standard symbol, for this is mu and this is we are 

required to prove that this is equal to E f zero at this is the Fermi energy at T equal to 

zero k this is mu of t mu at any temperature. So, in order to prove this, we have to start 

from the slope called Sommerfeld expansion for the electron concentration in at any 

temperature T.

(Refer Slide Time: 09:14)

So, what is the Sommerfeld expansion?
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Let us consider this before answering the question. So, let us discuss the Sommerfeld 

expansion. In order to use this the concerned integrals of the form H of E F of E d E from 

minus infinity to plus infinity, where F of E is the Fermi derived distribution function

and the function F of E tends to zero or vanishes as E tends to minus infinity, and

diverges no more rapidly than some power of epsilon as epsilon tends to infinity.

(Refer Slide Time: 11:01)

So, if it is so then let us define another function k of function epsilon define function k of 

epsilon such that k of epsilon equals integral zero to epsilon H of epsilon prime d epsilon 

prime. In other words, H of epsilon is just d k of epsilon by d epsilon. With this 

definition, now let us go back to let us call this integral I, then this integral maybe 

integrated by parts, and get we get I equal to the first term will go to zero. So, we will 

have integral minus infinity two plus infinity k of e into minus d f by d e times d e.

Therefore, the d f by d e is large only around e equal to mu.
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Therefore what do we do, we expand therefore, expand k of e as in a Taylor series at 

epsilon equal to mu in this integral I.
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So if we do this, we get things like K of e equals K of mu plus d K by d epsilon e equal 

to mu times epsilon minus mu plus 1 by 2 factorial d square k like d epsilon square at 

epsilon equal to mu times epsilon minus mu hole square plus terms like this. So, in 

general, we can write this as k of mu plus the sum from over n equal to one to infinity of 



epsilon mu minus mu to the power l by n factorial into d n k by d epsilon n evaluated at 

epsilon equal to mu.

(Refer Slide Time: 14:33)

So, this is what we are going to substitute here.
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In integral has we also take into account, in fact, this is the delta function with a value 

one from minus infinity to plus infinity, this is an even function.
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S

So it is look like this, so that would be d f by strictly it becomes in the related becomes 

delta function. So, we use this property therefore, it is a even function of epsilon.

Therefore, in this integration over E, we have only left with terms, which are even n. So, 

taking only those terms we can write the integral required integral as we have the 

definition that k of E is integral using that. So, the first term will be k of mu. So, this will 

be a minus infinity to mu that will be the first term plus sigma n equal to 1 to infinity of 

the integral minus infinity to plus infinity epsilon minus mu, we considered only even 

terms. So, with the power 2 n and 2 n factorial here into minus d f by d E into d 2 n

minus 1 by d epsilon 2 n minus 1 of k evaluated at epsilon equal to mu, times and this is 

H because I have written 2 n minus one here. So, this is the final result which we can 

now integrate.
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So, we finally, make the substitution epsilon minus mu by k b t as x because that is what 

is occurring in the derivative of the Fermi Dirac function.
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Therefore, we get the integral finally as integral minus infinity H of e F of e d e equals

plus sigma n equal to 1 to infinity of a n times k B T to the power 2 n into d to the power 

2 n minus 1 by d x to the power 2 n minus 1 of H of e epsilon evaluated at epsilon equal 

to mu. Where a n as the integral of the form x to the power 2 n by 2 n factorial into d by 

d x of 1 by e to the power x plus 1 d x . So, one can show that this this integral can be 



evaluated and we arrive at 2 into 1 minus 1 by 2 to the power n 2 n plus 1 by 3 to the 

power 2 n minus 1 by 4 to the power 2 plus 1 by 5 to the power 2 n and so on. This is a 

standard result, which we will assume here.
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So, this is written usually in terms Riemann zeta function.
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Zeta of n, so we write a n as 2 minus 1 by 2 to power 2 n minus 1 into zeta of 2 n. Where 

zeta n is 1 plus 1 by 2 to the power n plus 1 by 3 to the power n plus etcetera.
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So, this can be evaluated, so zeta 2 n in general as the form 2 to the power 2 n minus 2

times pi to the power 2 n by 2 n factorial into B n, where B n is known as the Bernoulli 

number.

(Refer Slide Time: 21:07)

So, this Bernoulli number as the following values B 1 for n equal to 1 is just 1 6; B 2 is 1

by 30 and so on. So, these are known standard results. So, in most practical calculations 

in metal physics, we need to know rarely more than zeta two zeta 2 the Riemann’s zeta 

function is just pi square by 6.
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So, using this result we get the chemical potential mu at any temperature T as E F 0, the 

chemical potential or the Fermi energy and absolute zero minus using the expansion

Sommerfeld expansion and truncating it in the first term pi square by 6 k B T whole 

square into D of E F where D of E F is the density of states D dash by D E F. Where D 

dash D E F is derivative with respect to the energy.

(Refer Slide Time: 22:32)

So, we arrive at this result for the chemical potential in two dimensions, the question was 

about chemical potential in two dimensions, for D equal to 2, we know that the density 



of states d of e is constant this is the reason which we have considered already.

Therefore, D dash E F is zero. Therefore, mu of t the chemical potential at any 

temperature T above zero k is just the Fermi energy at T equal to zero k, because this 

term vanishes, so that is the result that we are required to prove.

(Refer Slide Time: 23:31)

The next question is given in the form of a fill in the blanks, fill in the blanks are 

straightforward.

(Refer Slide Time: 23:53)



The density of states d of e for free electrons in the space of dimension d in space of 

dimension d is proportional to the energy to the power n where n is the answer;

obviously, we have considered this already the answer is; obviously, d minus 2 by 2. 

And the next question is about Fermi Dirac distribution function, if the f of e is the Fermi

Dirac distribution function integral d f by d e time d e over minus infinity to plus infinity 

is the answer obviously, minus 1.
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In the last lecture we discussed the free electron theory of metals in this connection we 

noted that metals constitute a particularly simple kind of solids in which most of the 

conduction properties and other related thermal behaviour all these are determined by 

the. So, called conduction electrons which behave very much like an ideal gas atoms or 

molecules except that the electron gas obeys in subjected to Pauli exclusion principle and 

therefore, satisfy fermi dirac distribution.

So, even though the metal is a solid crystalline solid it is mainly the electron gas which 

decides these physical properties like electrical transport heat transport of heat specific 

heat all these properties are determined by of course, there is a role from the ions the 

conduction electrons are formed by ionisation of the atoms of the metal. So, that you 

have positive ions. And then into which there is a free electron gas which is free to 

wander around as long as it is within the metal it is confined to the metal as a whole the 

metallic bond is something that binds the electron gas to the metal it is not able to escape 

it and become completely free.



So, except that they are free to wander around inside the metal under the influence of 

applied electric or magnetic fields applied heat thermal gradients and so on. So, it is this 

behaviour of this electron gas which is profoundly different from.

(Refer Slide Time: 03:08)

That of an ideal gas atom or molecule because the molecules are atoms of an ideal gas a

classical ideal gas or satisfied the or governed by the Maxwell Boltzmann distribution

this is familiar already to all of us, but the electron gas is subjected to the fermi dirac 

distribution. This is because the electrons are quantum mechanical particles and fermi 

dirac distribution is different from the Maxwell Boltzmann distribution because of the 

quantum behaviour of the electrons which are determined by the pauli exclusion 

principle the essence of the pauli exclusion principle is that. If there is an energies level 

and an electron occupies this energy level then no other electrons can come and occupy 

the same energy level. So, that is why it is called the exclusion principle and this 

profoundly affects the way the electrons are distributed in energy and we saw the precise 

form of the fermi dirac distribution which at absolute zero the distribution function goes 

like this as a value one here to zero and it is like this and this is known as the fermi

energy ef this is f zero kelvin.

So, all these states within for energies less than the fermi energy the states are 

completely occupied each state being occupied by a given single electron and all these 

states above the fermi level are completely empty. So, the fermi energy at absolute zero 



is the highest energy level which is occupied in the case of a metal. And therefore, this 

will modify the way there are electrons are distributed in energy and this is again given 

by the dispersion curve of the electron, which is the e versus k curve and this is governed

by the kinetic energy of the electrons which is h cross square k square by 2 m. And

therefore, this will be a parabolic curve which will look like this. So, that is a and states 

up to the fermi energy are filled these are all these states are completely filled.

So, what happens is that we discussed last time the behaviour of the contribution of these 

electrons to the specific heat, because when there is a thermal excitation the electrons are 

going to observe this heat. And therefore, there's going to be specific heat contribution 

due to this electron gas. Now this contribution we saw is like the hound in the hound of 

baskervilles is the dog that did not bark at night. So, the electronic in specific heat does 

not appear, it is not a dominant contribution that is the overall result of this, that is 

because this fermi energy is at the order of 10 to the power four Kelvin. Whereas normal 

thermal elicitations are of the order of thermal excitation is at the order of ten to the 

power two kelvin.

(Refer Slide Time: 07:01)

So, it is a very small quantity in comparison to this. So, if you have a small temperature 

window here which say this is the energy initial energy, and the thermal excitation 

suppose it takes the electron to this now this is the initial. And final states are all already 

occupied and therefore, the electron cannot go into this state. So, even though you excite 



it these electrons which are deep within the energy scheme the occupied energy level 

they are unable to participate in the thermal excitation it is only the electrons which are 

the fringe which are here in a small skin layer around the fermi energy these are the 

fraction of electrons which will be able to contribute to the specific heat by being 

thermally excited. So, it is this fraction and this fraction as you can see is about a 

hundredth this ratio of this temperatures is one in hundredth. So, it is only a fraction of 

point zero one or one in hundred of total of number of electron, which can get excited 

and therefore, contribute to this specific heat it is for this reason. So, the fraction of 

electrons excited is of the order of t by t f, where t f is given by k b t f equals e f zero or e 

f. So, this fraction is only at the order of 0.0.

(Refer Slide Time: 09:10)

One and this fraction of electron each electron will be excited by an amount k b t by

Boltzmann's equipartition theorem therefore, the total contribution is T f, that is the mean 

energy of these electrons, which are excited since this goes as t square. So, the specific 

heat c electronic the specific heat which is the e by d t is proportional to the absolute 

temperature.
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So, that is what we write as c e equals it goes as gamma t where gamma is the electronic

heat capacity coefficient. So, it is the Pauli exclusion principle and the fermi dirac 

distribution which profoundly modify the behaviour of the electronic system, and 

prevent it from absorbing thermal excitation energy to a large extent and confine only a 

small fraction t by T f of the total number of electron to be thermally excited. And

therefore, contribute only a term or the order of gamma t as we will see later the lattice 

the crystal lattice of a ions in a metal will have a contribution which goes as t cube the 

cube of the absolute temperature and therefore, the total specific heat will be of the form

gamma t plus beta t cube.

So, at high temperatures it is this term which will dominate therefore, this will be 

negligible, and you cannot even detect it it is only when you go to temperatures as the 

order of one Kelvin, which is an extremely low temperature it is only at such low 

temperature. These two terms will become comparable and then you can detect the 

electronic contribution. So, this is the important concept that we developed last time.
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Now, we move on to discuss how this picture of conduction electron gas in a metal is 

going to lead to the very well-known behaviour of metals namely that they are very good 

electrical conductors. So, we would like to know how and why a metal like silver or gold 

or copper they are very good conductors of electricity this is a very important 

characteristic of a metal which we would like to understand in the frame work of the free 

electron gas picture. So, this is our next aim. So, what do we do we just take this 

conduction electron gas consider it and then apply an electric field a dc electric field.

(Refer Slide Time: 13:03)



So, let us first start looking by looking at the behaviour of a single electron of electronic 

charge electron of mass m and charge minus e. So, let us look at what happens to these 

electron when we apply a dc electrical field of strength e. So, we know that we can this is 

a very simple situation. And we will to start with use a classical picture which was due to 

which was first proposed by a person named Drude. So, this is known as the Drude 

theory of electrical conductivity this is an extremely simple picture where I have a 

particle of mass m, but a charged particle carrying the charge minus e and therefore, in 

an electric field the force on it will be minus e e and that will be equal to this is the force.

So, Newton's law of motion tells us that this should be because this v d, because v d is 

known as the drift velocity of the electron why do we call it drift velocity. This is 

because normally if you do not have an applied electric field what happens to these 

electrons, they are still moving around they they are very much like as we said they are 

very much like the atoms on a ideal gas. So, they are not keeping quite. So, they are free 

to move around. And therefore, they do move does it mean that they there will be a 

conductivity there will be electrical conduction whenever an electron moves somewhere 

there should be a current and therefore, there should be a conduction, but this question is 

answered because in the classical picture these electrons are free to move around.

(Refer Slide Time: 15:26)

But they more around in perfectly a random fashion very much like what is said in the 

kinetic theory of gases. So, they are moving around a given electron is moving around in 



all possible directions randomly with equal probability. Therefore, this electron is very 

much like a drunkard what does a drunkard do a drunkard stands here he is under the 

influence of liquor. So, you watch him he is moving a few steps in this way and then 

talks to himself and comes, and moves a few steps this way and then this way. So, what 

happens even after a few hours, if you watch him he if he is standing in a place is 

moving this moving this way moving this way moving everywhere all the time, but the 

where is the net displacement he is where is was a few hours ago. So, it is a drunkard 

who walks all the time, but with no net displacement there is no net displacement. So, in 

the same way the electrons when they are simply diffusing like the atoms of a gas then 

the net velocity in any given direction when there is no field vanishes identically it is 

zero and therefore, when there is these current density is just given by minus ev. So, this 

velocity is zero.

So, it vanishes. So, there is no conduction even though the electrons are moving around 

they are bumping around in all possible directions, but nothing happens, if you are 

cannot focusing on a particular direction and trying to measure the conduction 

conductivity in that direction. So, it vanishes in the absence of an applied electric field,

but when you put an applied electric field in then this electric field forces the electron to 

move in a direction opposite to the applied electric field. Therefore, there is a net drift in 

a given direction that is why this is called a drift velocity, and this gives you the rate at 

which this distribute this this drift velocity changes with time and gets accelerated by the 

applied electric field. So, that is the equation of motion well if this is all there is to head.
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Let us see what happens therefore, integrating this we will see that v d is integral minus

e e by m d t. Therefore, this is by t plus a constant v zero the initial speed which is zero 

to start with there was no velocity when there was no electric field. So, if we start from 

rest this is the net, and the j the current density will go as e square e by m into t from this 

equation so; that means, there will be a current build up. And as time passes on the 

current will go on increasing monotonically, and it will eventually if you wait long 

enough it can even blow up and become infinitely large, but we all know that this does 

not happen in any conductor there is a finite current. If you apply a certain voltage 

producing a certain electric field it produces a certain amount of current which is given 

by ohm's law, this is the observation that we are all familiar with, but this model does not

explain that instead it predicts a current density which goes on increasing monotonically 

with time.
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If you wait long enough you can get an infinite current from a finite electric field which 

is up surd, this is because there is something that we ignored you are not taken into 

account these electrons this is the behaviour of one electron. And even if you have ten 

thousand or ten to the power 24 electrons the behaviour can be described by a simple 

addition or super position of these current contributions.
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But this gas is being when it is moving when it is drifting under the influence of an 

electric field, there are other things that are happening on the path these electrons gets 



scattered by various obstacles on their way. For example, in a in a metallic lattice there 

are many impurities impurity atoms, there are also the positive ions and then there are 

defects of various kinds like dislocations stacking walls grain boundaries and. So, on all 

these act as scattering centres. So, this scattering can arise from impurities also these 

atoms are ions in a crystalline solid are not at rest there are vibrating all the time there 

are thermal vibrations at any finite temperatures and these thermal vibrations increase as 

temperature increases.

So, it is a even if you think that these vibrations are simple harmonic there will be an 

effect due to these vibrations vibrating atoms and therefore, they can act as scattering 

centres the vibrating ions in the crystal lattice in the metallic crystal lattice. So, these 

thermal vibrations when they are quantise, they are called phonons we will discuss them 

a little later for our present discussion, it is enough to know that these are quantised

thermal vibrations of the solid.

So, there can be scattering due to phonons, which will increase with temperature unlike 

the impurities the phonon scattering will depend on the temperature. So, these scattering 

events have to be considered in order to decide what will be the drift velocity of a given 

electron the way this scattering is taken into account is by its thinking that suppose there 

is no scattering of a given electron is scattered at a particular instant of time. Then the 

entire distribution is affected the distribution of the electrons momentarily, but then this 

distribution if you leave this like this. And look at only the scattering even immediately 

after the scattering the entire distribution will relax back to its original value there is an 



equilibrium distribution. And then that is momentarily disturbed by the scattering of the 

electrons and then after a little time this disturbed distribution will relax back to the 

original equilibrium distribution function. So, this is model which is called the relaxation 

time model.

So, if this takes as an amount of frame tau tau is known as the relaxation time the 

characteristic time in which the drifting electron relax back to an equilibrium 

configuration, when there will be a limiting velocity not a unlimited velocity like that.

Then this is described mathematically by any equation of this form these are simple first 

order differential equation which as you all know will produce a solution which gives 

you a velocity which decays exponentially with a characteristic time. So, this will a drift 

velocity which goes as. So, that is why this tau is known as the characteristic time of 

relaxation through which describes this exponential relaxation process. So, this can now 

be combined. So, there are two processes one the applied electric field accelerates the

electron, and then the electrons which gets scattered by the various scattering centres in 

the solid they produce a relaxation at the distribution function towards an equilibrium or 

limiting value.

(Refer Slide Time: 25:26)

And therefore, we have to consider both of these equations together to describe the rate 

of change in time of the drift velocity.
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So, when you do this you get an equation a combined equation which is of this form eE

by m like this plus an additional term. So, that equation is that is the equation will 

describe the time rate of change, and when you solve this first order differential equation 

this will give you a steady state solution which will give you something like. And 

therefore, if there are if there is a number n electrons if if n is the electron concentration

then j is n e v d, and this will be n e square tau by m times e and since by ohm's law this 

is equal to sigma e where sigma is the conductivity.

So, we get the electrical conductivity as n e square tau by m; that is the drude expression 

for the electrical conductivity of a metal having a concentration n of conduction electrons 

each carrying a charge e. And a mass having a mass m, which are drifting under the 

influence of an electric field getting scattered by the various scattering centres inside the 

metal. And relax with a characteristic in time tau towards an equilibrium value. So, for 

such a situation the drude theory, which is a purely classical theory which does not take 

into account the quantum nature as electrons this is a very old theory, but which gives a 

remarkably accurate expression for the electrical conductivity. If you we already saw 

how we can calculate the electron concentrations using fermi dirac distribution, and if 

you plug in the value one finds a very nice way to describe the electrical resistivity or 

conductivity behaviour of simple metals well.
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This is all very well, but the question is can we use classical behaviour a classical 

description the answer is no as we already saw in the connection with the electronic heat 

capacity. So, we have to require that the electrons obey fermi dirac statistics. So, we have 

to write the equilibrium distribution function in the presence of scattering, and in the 

presence of an applied electric field in order to do this we make use of a formalism 

which was again developed by Boltzmann.
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This is known as the Boltzmann transport equation the Boltzmann transport equation 

says tells us what happens to the distribution function in the presence of an applied 

electric field, and also in the presence of scattering mechanisms. So, we talk about again 

the distribution function f of e, which is the fermi dirac standard fermi dirac distribution

function but we will call it f zero when it is when there are no applied electric fields, and 

there are now scattering mechanism. We will call it f zero, that is the equilibrium 

distribution function, which has we know has the form one by we saw this last time.

So, this is a standard equilibrium distribution function in the absence of applied electric 

fields and scattering mechanisms, but now the Boltzmann's transport equation tells us 

how to write the distribution function in the presence of fields and collisions due to 

scattering. So, the distribution function changes the f of e changes with time. And now 

we have to it is convenient to distinguish between the influence of fields fields can be 

electric fields it can be magnetic fields it can be even temperature gradient. So, 

depending, if it is an electric field the transfer to the electrons is determined by the 

electrical conduction mechanism, if it is a thermal gradient then this is determined by the 

thermal conduction.

So, you can have via this formalism we can at the same time describe electrical as well 

as thermal conduction and many other processes as you see which come under the 

general category of transport processes, that is why this equation is known as the 

transport equation. So, the change in the distribution function with time has two 

contributions one due to fields and another due to collisions. So, we will evaluate them 

separately.



(Refer Slide Time: 32:25)

So, how do we do this. So, this will be implying this f nought minus I can write this as in 

terms of the energy using the energy momentum relationship. Therefore, I can write de 

by d k x here, which will give me h cross v x, you can check this up times e ex by h cross

d t where v x is the corresponding speed. So, this is k x square by two m. So, this 

simplifying this we will find now differentiating this d f by d t field.

And now f nought is the equilibrium distribution function in the absence of the fields,

and therefore that will not change the fields do not affect the equilibrium configuration 

the value the way they are distributed under equilibrium in steady state. So, the change is 

coming only from this and that is given as please note that I am writing the x component 

of the applied electric field in terms of e in this form, and the energy is written by 

represented by e in this form. So, please distinguish these two let us keep these two 

separately not mix them up. So, this gives you this term and the df by dt due to collisions

you have already seen how it goes by the velocity and therefore, this is a similar form

very much similar to what happens in the case of the drift velocity.

So, the distribution from this describe this equation describes the exponential relaxation 

at the distribution function to the equilibrium value f nought with the characteristic time 

tau. So, these two have to be combined in order to get the total rate of change. So, that 

will give me f as taking f in this, and combining these two equations the results here, we 

arrive at the net distribution function in the presence of the applied field into...
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So, we have to now use this distribution function the new distribution function to 

describe the average behaviour of various quantities such as the current density.

(Refer Slide Time: 36:30)

So, the evaluation of the current density proceeds in the same way as before j x equals e 

by four pi cube f v x d k x d k y d k z integral a triple integral in k's place, where f is 

what we have on the other side. Now this has two contribution from f naught and d f 

naught by de now this contribution due to the part involving f nought vanishes, because 

it is the equilibrium configuration. And it is a as we have already seen under steady state 



equilibrium in the absence of applied fields this contribution to the current density 

vanishes because the electron has a random motion. So, it is only the other term which 

contributes to this in order to evaluate this integral the usual procedure is to consider this 

volume element in k's place which can be written rewritten. We rewrite this part as d s 

times d k n, where d s is an element of area of constant energy surface and k n d k n is a 

length element in the direction normal to this constant energy. So, we evaluate this 

integral using this relationship.

(Refer Slide Time: 39:00)

So, that I can write d k x d k y d k z as one by h cross v x d s de, so replacing this and 

calculating this we arrive at the final result j x equals evaluating all this e square e x by 

four pi cube h cross tau integral v x square by v d s de into d f by d t. Now we left ex we 

would like to not only calculate j x, but we will also like to calculate it along with three 

principle directions xyz. So, we would like to evaluate j y and j z.

Under the influence of electric fields directed along the y and z directions setting ex to be 

equal to e y to be equal to e z, that is we apply the same electric field and we assume that 

this metal is a cubic metal having cubic symmetry. So, that j x equal to j y equal to j z

equal to j in other words we for the moment we ignore the anisotropic of a solid and 

consider the metal as an isotropic conductor, which has the same behaviour in all the 

three directions. If we do this and simplify this integral we get the relation connecting j 



to e, and and using ohm's law j equal to sigma e we can write the conductivity as e 

square by 12 pi cube h cross to tau integral v square by v.

(Refer Slide Time: 41:33)

So, which is v d s and evaluating this and using the relation n equal to four pi by three k f 

cube divided by four pi cube, that is the electron concentration. We get back we find that 

simplifying we find again the same relation the old drude formula for the electrical 

conductivity this means that the application of the fermi dirac distribution does not 

change the form in the drude's formula. And we get this this expression gives you a very

nice way to determine the a calculate the electrical conductivity of a metal. We will 

continue in the next lecture to see how we can describe other transport process like 

thermal conduction using the same formulation.
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Lecture - 34
Energy Bands in Solids

The free electron theory, which was successful in explaining the physical properties of 

metallic materials has its serious limitations.

(Refer Slide Time: 00:36)

Because it is based on the free electron theory is based on one - one electron 

approximation, which means that we look at one electron and considered the effect of all 

the other conductional electrons on it in the form of a square well potential, which is 

constant throughout the metal. And to which this electron is subject and which prevent it

from getting out of the metal as whole. These are the two approximation and they are not 

generally valid.
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So, in order to make further progress, it is necessary to go beyond this approximation 

mainly consider the more realistic situation in which we consider the periodic potential

experienced by an electron due to all the ion cores in the lattice - crystal lattice. So, there 

are ion cores which are regularly arranged in a crystal lattice in all three dimension, I am 

showing one-dimensional situation. So, the potential is something like there will be…
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So, and this will repeated self everywhere so and so on. So, this is the periodic potential 

which we are talking about. This potential has a periodicity of the crystal lattice. So we 



have to consider the motion of the electron subject to this given by the Schrodinger 

equation in quantum mechanics.
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Subject to this periodic potential V of r, which has the periodicity of the crystal lattice. In

other words V of r equals where r n is a general lattice vector n 1 a 1 plus n 2 a 2 plus n 3

a 3 and n 1 n 2 n 3 are integers and a 1 a 2 a 3 are the basic translation vectors.
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So, this is simply the condition of periodicity that the potential remains same at any 

given lattice point, and it is equal to the value of potential at any other lattice point given 



by the position vector r plus r n. So, this is the condition and we have to solve the 

Schrodinger equation H psi of r equals minus H cross by a by 2 m del square plus V of r 

psi of r equal to E psi of r. So, we have to find energy Eigen values E by solving this 

Schrodinger equation subject to this. And because of the periodicity, it is possible to 

expand this in the Fourier series of the lattice periodic potential in the form where G is a 

reciprocal lattice vector we already consider this well discussing diffraction of x-rays by 

a crystal lattice.
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And we can also expand the plain psi of r in the form of plain waves where k is the wave 

vector of z electron. So, using this substituting this and this we get equals E sigma k c k a 

to the power I k dot r.
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That will be the equation that we have to solve and this can be written also in the form 

factoring out a to the power I k dot r we can write this as which is valued for all are

which means the square bracket at quantity should vanish.
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So, we get. So, that we can therefore, write psi k of r as sigma g c k minus g E to the 

power I k minus g dot r.
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Which can also be written as u k of r a to the power i k dot r where u k of r is. So, we get 

the automatic property that the wave function psi k of r this modulator is a free electron 

wave function E to the power i k dot r modulator by the function u k of r such that u k of 

r equals u k of r plus r n. So, this as the modulating function as the periodicity of the 

lattice and so this is known as black wave function. So, the consequences of translational 

invariance of the periodic crystalline lattice is that the wave function psi k r is no longer 

the free electron plane wave function E to the power i k dot r that E to the power i k dot r 

modulated by the u k of r which is also translational invariance. And this is the form of 

the black wave function which we should use in our description of the energy Eigen

values of an electron moving in a perfectly periodic potential. So, this is step one this is 

one important result which we will use in our discussion of the formation of so-called 

energy bands in solids.
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So, we move on to the discussion of energy bands in solids. In this discussion, we have 

to answer the question how bands f found the already saw in our discussion of the 

energetic of a homo nuclear diatomic molecule that if you have two molecule which are 

a far apart and therefore, non-interacting. The energy Eigen value of the two atom 

system is just twice the energy of the individual atoms and I am showing them together 

here in the form in which they are regenerate. So, this is energy of E a plus E b wave a 

and b are atoms which are no interacting now as the atoms are brought together we saw 

that the atom start interacting we turn on an interaction interact atomic interaction the 

electronic and nucleolus the electron and nucleates start interacting by as a coulomb 

potential. So, this interaction many it turn on and the two molecules come close together 

then we saw that the energy Eigen value is going to be given by the secular determinant

where H 1 1 H 2 2 H 1 2 and H 2 1 are matrix elements of the interaction potential. Or

interaction Hamiltonians between the individual atomic states represented by psi 1 psi 2.

So, solving this we see that we get a quadratic equation with two root.
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So, these quadratic equation has this form for which the roots are. So, this shows this will 

be this is the H 1 1 plus H 2 2 is what we call E 1 plus E 2 these are the energies of 

individual non interacting atoms and the resulting energy. Now in the presents of the 

interaction one of this is E one is plus square root of H 1 1 plus H 2 2 square plus 4 k 1 2

H 2 1.
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Yes and the other one will be E 2 will be minus. So, there are two routes one 

corresponding to a lower value corresponding to the negative sign there, and a higher 



energy value corresponding to… So, these are the E 2 E 1. So, you see that any 

interaction when it is stand on the two atom systems the energy level are split into in a 

such a way, the two fold degenerate is lifted and there are two non-degenerated energy 

levels one the higher energy Eigen value, and another with the lower energy Eigen value.

Now this is the situation when two atoms interact. We are now considering the periodic 

potential due to the entire lattice of all the ten to power 23 electrons. So, these are going

to give you a large number of interaction of the same kind the solid is after all large 

molecule.

(Refer Slide Time: 16:57)

So, we are going to have a large number of splitting in this. So, of this finally, becomes a 

quasi I continuum when the number of interaction is very large so. This is a quasi I

continuum. So, this continuum what we call an energy band in the presence of the 

perfectly periodic crystalline potential the electron energy going to sprodon into the form 

of energy bands. So, this is the mechanism of energy bands in order to discuss the 

detailed nature of the energy band.



(Refer Slide Time: 17:53)

Energy band it is necessary to go a little for other this is only a qualitative description of 

the interaction. Now let us consider a specific model in which we will be position to 

calculate the energy band structure.

(Refer Slide Time: 18:11)

So, this model is simplify one-dimensional model known as Kronig-Penney model. This 

discusses the motion of the electron in is one-dimensional potential which is 0 for 0 less 

than X less than area.



(Refer Slide Time: 18:42)

And equals V 0 for minus b less than a less than a. So this is known as less than 0 region 

one, this is region two pictorially this mean that we have atoms which are situated like 

this.

(Refer Slide Time: 19:07)

And then you have a potential which is 0 here potentially is represented here which is 0

and when it is reaches the neighborhood of ion core then the potential goes up like that.

So, this is V 0 this is minus b this is 0 this is a.



(Refer Slide Time: 19:48)

So, in the torsion the Schrodinger equations in one-dimensional d square psi d x square 2

two m V by H cross square psi equal 0 this is region one where V of x is 0 then. So, this 

is region one this is region 2 this region one this is region 2 let us first short and write 2

m E by H cross square.

(Refer Slide Time: 21:00)

Yes alpha square and two m into V naught minus E by H cross square as beta square. So, 

that this becomes and this is now we have the black solution the black form which we 

discuss already in the form. So, that substituting this and making differentiation and 



substitute that we get the two equation these equation become and there u r, u 2 are the 

function u here in the region 1 2. So, these are the equation to be satisfy solved for u and 

u 2 the solution u and u 2 should satisfy boundary condition which are such that at the 

interface were at minus b at 0 and a they have to be matched in other words u 1 of 0.

They matched two wave function match at x equal to 0.

(Refer Slide Time: 23:29)

And there are again match at u 1 of minus B equals u 2 of a for u 1 of a. These 2 minus B

this a consequent of translation in variance and also condition on the derivatives d u one 

d x at the x equal to 0 matches d u 2 by d x at x is equal to 0. And a similar condition on 

d u 1 by d x x equal to a equals d u 2 by d x at x equal to minus b. If I take the forms this 

gives forms u 1 equals a E to the power i alpha minus k x plus d E to the power of minus

i alpha plus k x. And u 2 is c to the power I beta prime by k x plus d E to the power 

minus i beta plus i k x. So, we required the solution u 1 and u 2 to satisfied this condition 

and that gives you a determinant which a 4 by 4 determinant because 4 conditions there 

and which when expanded leads to the following condition to be satisfied.



(Refer Slide Time: 25:20)

Namely beta square by alpha square by 2 alpha beta sin alpha a sin H of beta b plus cos 

alpha a cosign hyperbolic beta b equal to cos k a plus b. So, that will be the condition to 

be satisfied which is got by a expanding by the four by four determinants now we specify 

to the situation where V naught tends to infinity and b tends to 0 in other words it is 

extremely thin barrier it is infinitely high.

(Refer Slide Time: 26:22)



Such that V naught b remains this case we get limit beta b 10 into 0 sin H beta b by b 

equal to 1 and therefore, the derivative condition b sin alpha a plus cos alpha a equals cos 

k a.

(Refer Slide Time: 26:54)

So, this p is nothing but m V naught a b by H cross square. So, this is the parameter 

which involves the highest of the potential barrier and the thickness of the potential 

barrier. So, this is the basic condition which determines the energy Eigen values.

(Refer Slide Time: 27:28)



We can see the nature of this energy band s by looking at the graphical representation of 

these energy bands. So, the figure shows the plate of the right hand side this side of this 

equation for a given value of p as a function of alpha a. So, we can see that there shaded 

portions left hand side is plotted since the right hand side is just cosign function. So, it

cannot go beyond the value is a plus one of minus one and therefore, you find shaded 

regions in the figure correspond to such values of cosign k a which are unreasonable and 

therefore, are forbidden they are not allowed. So, you find that energy values get into 

two in two regions one the un shaded one corresponding to the allowed energy values 

and the shaded regions which corresponds to the forbidden regions the energy Eigen

values.

(Refer Slide Time: 28:47)

So, these energy Eigen values when plotted look like this they are shown the energy E

versus k curve we shown in. So, this gives the energy versus the wave vector for an 

electron in a periodic potential described by the chronic penny model. So, you can see 

that there are discontinuities at k equal to pi by a and k equal to minus pi by a and then k 

equal to two pi by a k equal to minus q pi by a and so on. So, in general, for all k equal to 

n pi by a plus or minus there are discontinuities in a energy. So, the energy Eigen value 

goes from the value suddenly it is this and all the energy Eigen values in this region are 

not allowed.



So, these are the allowed energy Eigen values these are the forbidden energy Eigen 

values in the gap region again these are allowed set up Eigen values then followed by 

energy gap again in the next band so on for the third band and so on. So, this goes on and 

we find that this can be represented a bit more effectively in the. So, called reduced 

zones scheme this only means that the states k and k plus or minus in into 2 pi by a n into 

pi by a.

(Refer Slide Time: 30:45)

These are all equal and they are identical functions while the functions while the energies 

are different. So, the energies are different, but they are discovered by the same function.

So, these verses k curve can be done by restricting the k values in the range minus pi by 

a to plus pi by a



(Refer Slide Time: 31:12)

And all the energy values can be plotted within this region. So, such a plot issue shown 

in figure where the first band as energies shown in the lowermost curve these are we 

allowed value and then E two is the corresponding energy values for the second band 

plotted in the reduced came therefore, there is a gap between these two. So, there is an 

energy gap and then the next allowed band comes here that is the two k and similarly E

three k with a gap here. So, this shows the entire energy band structure within this first 

Brillouin zone which is the region between minus pi by a and plus pi by a. So, this is this 

describe the band structure the typical band structure. So, the Kernig-Penny model gives 

as an easy way to understand the formation of energy bands in periodic solid.



(Refer Slide Time: 32:32)

And this is very important in a discussion of the property of metals insulators and 

semiconductor these are new clause of materials which we are going to discuss from now 

on in a unified way hoe do you discuss this the matter let me just sketch the band 

structure in a simple way. So, this is the E energy and this is the band structure in a very 

crude form.

(Refer Slide Time: 33:18)

So, we have states laying here this is empty and there are states here. So, these are states 

which are occupy and these are states which are forbidden and therefore, this states allow 



forbidden an occupy empty and this is an occupied band the bands. And of course, the 

extent of to this energy value and it is only of full this band is completely occupy the 

lower bands and this is completely empty this is the gap. So, this is the picture of a metal

in a metal there is a completely occupy band separated from a partially occupied or of 

full conduction band this is known as the valance band and this is the conduction band.

So, the valance band is completely occupied whenever a band is completely occupied 

states are free for an electron to get into because of Pawley’s fusion principle and. So, 

conduction in a such a band is not possible the electron cannot move on one state to 

another similarly if there is a completely empty band that is also something in which 

there are no electrons therefore, is there is no conduction.

So, for conduction to be possible in a material request have a band structure with an 

uppermost band which is only partially feel in this case the metal is only of filled and 

therefore, of the band is empty and off of the band is occupied. So, the electrons the 

conduction electron is can move from the occupied states into the empty states there by 

facilitating conduction. So, conduction is possible. So, this is the band structure which 

renders a metal conducting coming to the case of an insulators and insulators how is its 

band structure.

(Refer Slide Time: 35:54)

Band structure again we shown in schematically in this way. So, you have a upper band 

and a lower band this is a gap. So, this is the valence band which is completely occupied 



and a conduction band which is empty, but separated The conduction band which is 

empty is separated from the valance band which is completely occupy by a very large 

gap energy gap. So, for carriers to into this empty band from in the occupied band they 

have to cross overcome this barrier produced by these energy gap and they have to get in 

from the state in the valance band they have to get into the state in the empty unoccupied

band upper band. So, this is possible only there as the energy which is more than the gap 

energy and then an insulators is does not happen and therefore this is not conducting.

(Refer Slide Time: 37:37)

Now we come to an another interesting class of material which we have not talked about

so far which is known as semiconductors. So, here the band structure is very similar that 

of an insulator. And there is an valance band below which is completely occupied with 

an energy gap which in contrast to an insulator the energy gap is as a very small value. In

other words, the occupied valance band is separated from the unoccupied conduction 

band only by an extremely small amount of energy of the order of an electron hole. So, it 

is easily possible for carriers to get excited across the gap from getting to conduction 

band. Therefore, they neither an insulator nor a metal like this, but they are 

semiconducting.

So, this is the new class of material, which will be discussing from now on. And the band 

structure theory, the theory of energy band provides a convenient mechanism or 

convenient way to understand the difference between an insulators, a metal and a 



semiconductor from the point of view of their band structures. And there relate these 

electronic band structure to the nature of the conduction band in these material. We will 

discuss semiconductors in the next session.

(Refer Slide Time: 39:06)
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Magnetic and Dielectric materials in 
Material science 

 
We know that current through a circular coil 
produces magnetic moment along the axis of the 
coil. When the electrons revolve around the 
positive nucleus, orbital magnetic moment 
arises. Similarly when the electron spins, spin 
magnetic moment arises. Magnetism arises from 
the magnetic moment or magnetic dipole of the 
magnetic materials. Any material that can be 
magnetized by application of external magnetic 
field is called a magnetic material. 
 
Types of Magnetic materials : 
 1. Diamagnetic 
 2. Paramagnetic 
 3.Ferro magnetic 
 4. Anti Ferromagnetic 
 5. Ferromagnetic 
 
Important terms used in magnetism : 
 
Magnetic flux density (B) : 
Magnetic flux density (B) in any material is the 
number of lines of magnetic force passing 
through unit area perpendicularly. 
 Unit : Wb/m2 or Tesla 
 
Magnetic field intensity (H) : 
Magnetic field intensity at any point in the 
magnetic field is the force experienced by an 
unit north pole placed at that point. 
 Unit : A/m 
 

B = 
0H 

 

Where 0 = permeability of free space (vacuum) 

0 = 4  x 10-7 H1m
-1  

Instead of vacuum, it the field is applied in a 
solid medium, the magnetic induction in the 
solid is given by  

B = 
H 

where = permeability of the solid material 
through which the magnetic lines of force pass 

 
= 

 

Hence the magnetic permeability ( ) of any 
material is the ratio of the magnetic induction in 
the sample to the applied magnetic field 
intensity. 
Relative permeability,   

r = 
 

 
The intensity of magnetization (M) 
The intensity of Masgnetisation of a sampkle of 
a material is the magnetic moment per unit 
volume. 

       Unit : A/m 
M & H are related by magnetic succeptibility x. 

 x =  

 
Magnetic Susceptibility (x) : 
Magnetic susceptibility (x) of a material is the 
ratio of the intensity of magnetization produced 
in the sample to the magnetic field intensity 
which produces the magnetization. It has no 
units. Momentic induction (B) is given by 
 B =  (H + M) 
Hence  

 =   



Magnetic and Dielectric materials in 
Material science  Study Material 

 

Download Study Materials on www.examsdaily.in  Follow us on FB for exam Updates: ExamsDaily

Relative permeability, = 1 + x 
 
Classification of Magnetic materials. 
If the atoms do not carry permanent magnetic 
dipoles, those materials are called diamagnetic. 
If the atoms of the material carry permanent 
magnetic dipoles, further classification is based 
on the interaction between the individual 
dipoles. 
If the permanent dipoles do not interact among 
themselves, the material is paramagnetic. 
If the interaction among the permanent dipoles 
is strong such that all the dipoles line up in 
parallel, the material is ferromagnetic. 
If the permanent dipoles line up in antiparallel 
direction, and are equal the material is 
antiferromagnetic and the magnetization 
vanishes. 
If the magnitudes of permanent dipoles aligned 
antiparallel are not equal thus exhibiting 
magnetization then the material is ferrmagnetic. 
 
 
Different sources of permanent magnetic 
moment are 
1. The orbital magnetic moment of the 
electrons. 
2. The spin magnetic moment of the electrons $ 
3. The spin magnetic moment of the nucleus. 
 
Properties of diamagnetic materials. : 
1. Permanent dipoles are absent. 
2. Effect is weak and often marked by other 
kinds of magnetism. 
3. When placed inside a magnetic field, 
magnetic lines of force are repeled. 
4. Magnetic susceptibility is negative. 

5. Magnetic susceptibility is independent of 
applied magnetic field strength. 
6. Relative permeability is slightly less than 
unity. 
 
Properties of paramagnetic materials. : 
1. They posses permanent magnetic dipoles. 
2. These dipoles are non-interacting 
3. The dipoles are randomly oriented and hence 
in the absence of external applied magnetic 
field, the net magnetization in any given 
direction is zero. 
4. When placed inside a magnetic field, it 
attracts the magnetic lines of force. 
5. Paramagnetic succeptibility is positive and 
depends greatly on temperature. 
 
Bohr Magneton : 
 When the atom is placed in a magnetic field, 
the orbital magnetic moment of the electrons is 
quantized. 
 A quantum of magnetic moment of an atomic 
system is known as Bohr magneton. 

  =  

 
Curie Law : 
Langevin showed that classical paramagnetic 
susceptibility (x) due to the alignment of 
magnetic moments along field direction is given 
by  

 x =  =   

where C = Curie constant and the relation is 
known as Curie Law 
 
Curie  Weiss Law : 
Ferromagnetic materials exhibit spontaneous 
magnetization below a characteristic 
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temperature called the ferromagnetic curie 
temperature. Above this temperature, the 
substance becomes paramagnetic and obey 
Curie  Weiss Law. 

 x =  

where c is Curie constant 
 q is paramagnetic Curie temperature 
 
Heisenberg theory of Ferromagnetism : 
The molecular field based on simple dipole  
dipole interaction was found to be less and 
hence cannot account for the existence of 
ferromagnetism. 
Heisenberg removed this discrepancy by 
assuming the quantum exchange interaction 
between the electrons spins instead of dipole  
dipole interaction. 
 
Domain theory of ferromagnetism : 
According to Weiss, a virgin specimen of 
ferromagnetic material consists of a number of 
regions or domains which are spontaneously 
magnetized due to parallel alignment of all 
magnetic dipoles. The direction of spontaneous 
magnetization varies from domain to domain. 
 
Hysteresis in magnetic materials : 
The hysteresis of ferromagnetic material refers 
to the log of magnetization behind the 
magnetising field. It is irreversible B-H 
characteristic curve of ferromagnetic or 
ferromagnetic materials. 

  

Hysteresis loss : 
 Hysteresis loss is the loss of energy in taking a 
ferromagnetic body through a complete cycle of 
magnetization. This loss is represented by the 
area enclosed by the hysteresis loop. 
 
Properties of hard and soft magnetic 
materials. 
Properties Hard soft 

1. Area of 
hysteresis loop 

Large Small 

2.  Hysteresis 
loss 

Large  Small 

3. Domain wall 
movement 

Difficult Relatively 
earlier 

4. Coercivity Large Small 
5. Retentivity  Large Small 
6. Magnetization 
& 
Demagnetization 

Not easy Easy 

7. Magnetostatic 
energy 

Large Small 

8. Permeability 
& Susceptibility 

Small Large 

9. Type of 
magnet that 
could be made 

Permanent 
magnet 

Electro-
magnets 

 
Antiferromagnetism : 
 In antiferromagnetism, electron spin of 
neighbouring atoms are aligned antiparallel. 
Anti-ferromagnetic susceptibility is small and 
positive and it depends greatly on temperature. 
 
Ferrites : 
 In a material of the magnitudes of permanent 
dipoles aligned antiparallel are not equal, such 
an uncompensated antiferromagnetism is known 
as ferrimagnetism and the corresponding 
materials are said to be ferromagnetic or ferrites. 
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Applications of Ferrites : 
1. They are used in transformer cores for high 
frequencies upto microwaves. 
2. They are used in radio receivers to increase 
the sensitivity and selectivity of the receiver. 
3. Ferrites are used in digital computers and data 
processing circuits as magnetic storage 
elements. 
4. They are used as isolator. 
 
uses in Transformer cores : 
 Ferrites are used as transformer cores for 
frequencies upto microwaves. This is because 
the eddy current problem preventing penetration 
of magnetic flux into the material is much less 
severe in ferrites than in iron. 
 
 
 
Magneto Resistance Effect : 
 In some magnetically soft materials the 
electrical resistance changes when the material 
is magnetized. The resistance goes back to its 
original value when the magnetizing field is 
turned off. This effect is called magneto 
resistance effect. 
 
Importance of magnetic materials : 
 Magnetic materials used for high density data 
storage. some materials are easily magnetized 
when placed in a weak magnetic field. When the 
field is turned off, the material rapidly 
demagnetizes. These materials are called soft 
magnetic materials. 
 In Hard magnetic materials through strong field 
is required for magnetization, they retain their 
magnetization even on removal of the field. 

 In some materials, the electrical resistance 
varies on magnetization. This effect is called 
Magneto Resistance Effect. 
 These effects are utilized in manufacture of 
magnetic recording heads for write and read the 
date for storage and retrival. 
 
Basic parts of a digital magnetic  tape 
system : 
i) Magnetic tape : Flexible plastic tape with 
their ferromagnetic material coating. 
 
ii) Tape Transport : Mechanism to run the tape 
part the recording / reading head. 
 
iii) Translators : Electronic part to convert 
given analog signal into digital for recording 
purposes and digital into analog for reading 
purposes. 
 
iv) Reading / writing Heads : Magnetic read / 
write heads to record / retrieve the data in / from 
the magnetic tape. 
 
v) switching and buffering equipment : This 
is to select the correct tape mechanism and to 
provide tasks such as winding /rewinding of the 
tape etc. 
 
Bubble storage : 
 Data can be stored in this crystals of canted 
antiferromagnetic oxides (BaFe12O19, YFeo3), or 
in amorphous alloyed films (Gd-Co, Gd-Fe), or 
in ferromagnetic materials such as Yttrium iron 
 garnet (Y3Fe5O12). They are tiny cylindrical 

regions called bubbles (as small as 1 mm in 
diameter) having a reversed momentisation 
compared to the matrix. 
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Hole burning : 
 The recording medium consists of an inert 
crystal host (such as Y2SiO5 with a low 
concentration of rare-earth impurity ions (such 
as Eu3+) distributed randomly. 
 Information is stored in the impurity ions by 
absorption of light resulting in a mechanism 
called hole burning. 
 
Stimulated echo ; 
 The recorded information is retrieved by a 
mechanism called the stimulated echo-when the 
recorded crystal is illuminated by another lager 
beam called the read pulse, coherent radiation is 
emitted from the already recorded impurity ion. 
This phenomenon is called stimulated echo. 
 
Dielectrics : 
 Dielectrics are insulating materials. In 
dielectrics all the electrons are bound to their 
parent molecules and there are no free charges. 
Even with normal voltage or thermal energy, 
electrons are not released. Dielectrics are non-
metallic materials of high specific resistance and 
have negative temperature coefficient of 
resistance. 
 

r  
 The dielectric characteristics of a material are 
determined by the dielectric constant or relative 

r

between the permittivity of the medium and the 
permittivity of free space. 

 r =  

 r has no unit. 
It is a measure of polarization in the dielectric 
material. 

 
Electric Plarization : 
 Let us consider an atom placed inside an 
electric field. The centre of positive charge is 
displaced along the applied field direction while 
the centre of negative charge is displaced in the 
opposite direction. Thus a dipole is produced. 
When a dielectric material is placed inside an 
electric filed such dipoles are created in all the 
atoms inside. This process of producing electric 
dipoles which are oriented along the field 
direction is called polarization in dielectrics. 
 
Polarizability ( ) : 
 When the strength of the electric field E is 
increased the strength of the induced dipole also 
increases. Thus the induced dipole moment is 
proportional to the intensity of the electric field. 
 i.e. =  E 
where , the constant of proportionality is 
called polarizability. 
 
Electric flux density (D) : 
 The electric flux density D at a point in a 
material is given by 
 D = r o E 
where E is the electric field strength. 
 eo  dielectric constant or permittivity of 
 free space (vacuum) 
 er  relative dielectric constant or relative 
permittivity of the material. 
 
Electric Susceptibility (Xe) : 
 Polarization vector p can be written as 
 P = o Xe E 
where the constant Xe is  the electric 
susceptibility. 

There Xe =  =  
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   Xe = ( r -1) 
 
Polarization process ; 
 Polarization occurs due to several atomic 
mechanisms. when the specimen is placed 
inside a d.c. electric field, polarization is due to 
four types of processes. 
a) electronic polarization 
b) ionic polarization 
c) orientation polarization & 
d) Space charge polarization 
 
Electronic polarization : 
 The displacement of the positively charged 
nucleus and the electrons of an atom in opposite 
directions on application of an electric field is 
called electronic polarization. 
 
Dielectric loss ; 
 When a dielectric material is subjected to the 
a.c. voltage, the electrical energy is absorbed by 
the material and is dissipated in the form of 
heat. This dissipation of energy is called 
dielectric loss. 
 
Loss angle : 
 In a perfect insulator polarization is complete 
during each cycle and there is no consumption 
of energy and the charging current leads the 
applied voltage by 90° But for commercial 
dielectrics this phase angle is less then 90° by an 
angel  called dielectric loss angle. Tan  is 
taken as measure of dielectric loss and is known 
as loss tangent. 

Also tan  =  

 
Dielectric brak down : 

 When a dielectric material loses its resistivity 
and permits very large current to flow through 
it, then the phenomenon is called dielectric 
breakdown. 
 

 
Different dielectric breakdown mechanisms : 

 i) Intrinsic breakdown 
 ii) Thermal breakdown 
 iii) Discharge breakdown 
 iv) Electrochemical breakdown 
 v) Defect breakdown 
Piezoelectrics and pyroelectrics are the two 
active dielectrics. 
 Piezoelectrics such as Barium titanate (Ba Ti 
O3), Pottassium dihydrogen phosphate (KPP), 
Lithium Niobate (LiNbO3) are used for making 
pressure transducers, ultrasonic transducers and 
microphones. Pyroelectrics such as Barium 
titanate (BaTiOe), Triglycine suplhate (TGS) 
and Lithium Niobate (LiNbo3) are used to make 
high sensitive infrared detectors. 
 
Requirement of good insulating materials ; 
i) high electrical resistivity 
ii) high dielectric strength 
iii) Sufficient mechanical strength to withstand 
vibration & 
iv) good heat conducting property 
 
Classification of insulating materials ; 
a) Solid insulating materials 
b) Liauid insulating materials 
c) Gaseous insulating materials 
 
a) Solid insulating materials : 
 1. Mica 
 2. Ceramics 
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3. Asbestos 
4. Rubber 
5. PVC materials 

b) Liquid insulating materials : 
i) Mineral insulating oil, 
1. Transformer oil 
2. Cable oil 
3. Capacitor oil 

ii) synthetic insulating oil 
iii) Miscellaneous insulating oils 
1. Vegetable oil 
2. Vaseline 
3. Silicon liquids 

c) Gaseous insulating materials : 
i) Air 
ii) Nitrogen 
iii) Inert gases 
iv) Sulphur hexafluoride 

 
Important applications of dielectric 
materials: 
i) Electical conductors made of aluminium or 
copper which are used for electric wiring are 
insulated with a outer jacket of plastic or rubber. 
ii) In heater coils ceramic beads are used to 
avoid short circuiting as well as to insulate the 
outer body from electric current. 
iii) In electric iron, mica or asbestos insulation 
is provided to prevent the flow of electric 
current to the outer body of the iron 
iv) In transformers as well as in motor and 
generator windings vanished cotton is used as 
insulator. 
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Lecture - 36
Semiconductors

We will start a discussion of semiconductors one of the most important class of materials 

in solids which have a wide range of technological application. In fact progress in 

semiconductor technology has revolutionized the area of modern electronics.

Semiconductors are materials, which have electrical conductivities, as it is obvious from 

the name lying between the electrical conductivity of a good conductor like a metal and a 

perfect insulator.

(Refer Slide Time: 00:56)

So, conductivities - electrical conductivity between that of metal and insulators.
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For example, we have given in table form. The conductivities of good conductors such as 

copper, gold and silver; insulators like ebonite, glass and mica; and semiconductors - the 

standard semiconductors are silicon, germanium and gallium arsenide. The electrical 

conductivity values at 0 degree Celsius or 273 Kelvin is given in the last column, and it 

is clear that the conductors have conductivity values of which are very high compared to 

those a semiconductor which in turn are very high compared to those are insulators. So, 

the electrical conductivities spans something like from the 18, 19 orders of magnitude 

among common materials. So, this is a very remarkable variation that is the first feature.

The second feature is that you have a temperature dependence of the electrical 

conductivity or resistors. We all know that indicates of a metal, electrical resistance 

versus temperature is linear and then becomes non-linear and become this is for a metal.

So, it has a linear variation and then the resistivity decreases with temperature; as the 

temperature is decrease, the resistivity decreases. So, you see that the resistivity 

increases, therefore the conductivity decreases electrical conductivity decreases

decreases with increasing temperature for a metal, so there are said to have the resistivity 

increases. Whereas in the case of a semiconductor conductivity increases with increasing 

temperature.



(Refer Slide Time: 04:10)

Unlike whereas, semiconductor conductivity increases, so this is called a positive 

temperature coefficient. So, this has a positive temperature coefficient of resistance. So, 

this is known as ptc. Whereas, the metals is known as ntc, it has a negative temperature 

coefficient. So, this is another important difference between the behavior way 

temperature variation of the conductivity of a semiconductor versus that of a metal.

(Refer Slide Time: 05:35)

Now, what are semiconductors? The typical semiconductor elements are as I already 

mentioned silicon and germanium. Both these elements belongs to the group four of the 



periodic table. Another important element, which form is in the group four is carbon. So, 

carbon, silicon, germanium have identical electronic configuration. And this is the reason 

why all of them behave like semiconductors. For example, silicon has an atomic number 

fourteen, therefore, it has an electronic configuration in which there are four electron 

with outermost 3S 2 core plus 3S 2 and 3P 2 electrons.

Germanium has an atomic number of 32, germanium has an atomic number of 32 and 

that as an electron configuration which is 4 s 2 and 4 p 2. Essential thing is this is the 3 s

and 3 p shell this is 4 s and 4 p shell, but in both cases the s and p outermost s and p shall 

are occupied by 2 electrons each. So, that is why the electron configurations are similar.

So, that is why there has similar physical and chemical properties, they have indeed 

similar crystal structure. In fact, it is also similar to that of carbon, but in its form as 

diamond. So, this crystal structure is that of diamond which is nothing but carbon, so the 

diamond has a cubic crystal structure. So, this diamond structure is shown in a picture.

(Refer Slide Time: 08:08)

So, figure shows the unit cell of silicon and germanium crystal. In this, we will discuss 

this in great detail, but this is the main feature. Each atom of silicon is tetrahedrally 

coordinate, have a cube and each atom of silicon is tetrahedrally coordinated, auto four 

near neighbor - tetrahedrally coordinates. Tetrahedron means the near neighbor is 4. So, 

each silicon is coordinated to 4 near neighbor silicon. So, there are tetrahedral bonds 

which are shown by shaded portions.



(Refer Slide Time: 09:18)

So, this structure is basically a face centered cubic – FCC. What does it mean that; that 

means, that there are times not only here, but all so at the face centred, and it is these are 

atoms which are tetrahedrally coordinate. So, the basis is a simple cubic lattice with two 

molecules in the unit cell one here and another at one-forth, one-fourth, one-forth. These 

are the two atoms, which form the basis, so this is what gives you the tetrahedral 

coordination. So, the tetrahedral mean the angle is 109 degrees 46 minutes.

(Refer Slide Time: 10:27)



So, these bonds are shown, basically what is happening is that you have two electrons 

here, one of these get electrons get promoted.

(Refer Slide Time: 10:45)

In the molecular orbital picture of the bond formation, you have one 4 S 2 electron 

excited into P orbital, and then you have one electron here 4 s 1. And then you have three 

electron and forming on S p 3 hybridization that is this electron which is excited joints 

with these and you have this electron with three electrons in the p shell including the one 

electron which is excited into the p shell. And you have the remaining electron and 3 p

electrons combine together to form S P 3 hybridized molecular orbital. These are the 

ones; we form covalent bonds, which are shown by the shaded region in the figure.



(Refer Slide Time: 11:53)

This is also the case with most compounds semiconductors, the compound 

semiconductors are formed by combining a group three element with a group five 

element or a group two element with a group six element.

(Refer Slide Time: 12:24)

So, both are compound semiconductors. The table shows these. So, you have group two 

elements and group three elements and group five elements giving you things like 

gallium, antimonite, indium, antimonite and so on. Indium phosphate, gallium arsenide 

things like that, so these are all three-five compounds. In the other case two six 



compounds it is materials like cadmium selenite, cadmium telluride and so on, zinc 

sulphide, usually sulphur selenium, tellurium form the sixth group, so cadmium, zinc 

etcetera are in the second group. So, forming compounds of this kind, so these are the 

two-six compound semiconductors. These also have similar crystal structure.

You also have classes the compound semiconductors prepared in glass c form

chalcogens, the sulphur selenium solarium are known as chalcogens and therefore, these 

are known also has chalcogenide glasses. So, preparing glassy form they are the class 

called the semiconducting glasses they have also acquired a lot of technological 

importance. So, that is regarding the basic structure and basic chemistry chemical and 

nature of these various kinds of semiconductor now we also have two important classes 

of semiconductors.

(Refer Slide Time: 14:44)

There are one is known as intrinsic semiconductor, second-class is extrinsic or doped 

semiconductor, because we have seen from our discussion of the energy band structure 

that the band structure electronic structure consist of an occupied valence band and an 

unoccupied conduction band, and the energy gap is rather low it is of the order of one 

electron volt say. So, the energy gap is such that it is sufficiently small for carriers to be 

a as already discuss, carriers can be excited across this the energy gap even thermally by 

at sufficiently high temperatures.



(Refer Slide Time: 15:51)

For example, room temperature and above, the carriers can be excited thermally some of 

the carriers. So, the intrinsic conductivity depends on the thermal activation of these 

carriers across the energy gap. So, then there are is an electron excited into the empty 

conduction band and a hole left behind in the valence band. Both the electron and hole 

move in opposite direction producing conduction. So, you have an electronic conduction 

and if hole conduction in a semiconductor, this is another major difference.

So, you have electronic and hole conduction; how do we know this we know these by 

performing hall effect measurements. This is why in an intrinsic semiconductor, the 

conduction is produced thermally or by natural means automatically without doing 

anything by just thermal activation. Whereas, in the case of an extrinsic semiconductor,

the electrical properties are controlled by adding impurities in extremely small 

concentration, so you call that doping, controlled impurities in an extremely pure 

material. Specific impurities are added we will discuss this later in detail.



(Refer Slide Time: 17:42)

In order to understand what happened let us look at the intrinsic semiconductor at a finite 

temperature which is above 0 Kelvin. Let us look at a particular site where there are see 

all the bonds here are shown by two dashes two lines. And this means the number of 

bonds, the number of lines is equal to the number of bonds. Now suppose we consider an

electron, yes that is marked E, now because this electron has been lost by the atom A and 

therefore, you have only one line. So, you have what is shown here is just the tetrahedral 

arrangement in three dimensions is projected onto two-dimensions. So, the four 

tetrahedral bonds are shown schematically in this manner.

(Refer Slide Time: 18:59)



At 0 Kelvin all the atoms are well linked with a perfect covalent bond. And there are no 

free electron, there is no conduction, the semiconductor is a perfect insulator. But as the 

temperature is increased the thermal energy will cause the atoms to migrate. Once the 

electron gains enough thermal energy, it gets dislodged from this bond. So, the dislodged 

electron is now free to move in the crystal lattice, and this electron will now respond to 

an electric field, thus contributing to electrical conductivity.

(Refer Slide Time: 19:40)

Now in this figure the dislodged electron where shown by the letter E. So, the bond A B

as last one electron. So, it has only a single link. So, between A and B, there is a missing 

link or a missing electron. A missing electron is shown as a hole H by the letter H. The 

electron these by the letter E in the figure, while H is for hole. So, when the electric field 

is applied, the electron moves in the direction opposite to that of the applied field, while 

the hole moves in the opposite direction. Now the missing link in the bond A B may be 

restored, if it captures another electron from a neighboring bond and then the hole moves 

on to that new side.



(Refer Slide Time: 20:45)

So, this creates a hole now if it moves between c and d rather than from A and B because 

A B as captured an electron. So, the hole moves in the direction opposite to that of the 

electron it is along the direction of the field both the electrons and holes contribute to the 

conductivity the free electron and the holes are considered as defects in an otherwise 

perfect covalent bonded structure. So, in an intrinsic semiconductor the number of holes 

and the number of electrons are equal this is an important concept. Whereas, in the case 

of an extrinsic semiconductor as we already saw we have to add impurities or doped with 

impurities.

(Refer Slide Time: 21:48)



Now, the impurities can be of two types. The impurities which are added can be either 

donor impurities or acceptor impurities. A donor impurity is one which donates an 

electron for example, an element from group 5 in the periodic table, we already saw 

these elements like phosphorus, arsenic and tumanic; whereas, acceptor impurities are 

one which are from an element from group 3 such as bismuth, aluminum, indium. So, 

these are added in extremely small quantities in at the part per million.

(Refer Slide Time: 23:03)

If it is a donor impurity, you added an electron, so it is said to give n type conductivity 

because it is electronic conduction since in charge on the electron is negative it is called 

n type semiconductors. When you doped a pure material semiconductor silicon or 

germanium with a controlled amount of donor impurities from group 5 of the periodic 

table, for example, give result in an n-type semiconductor. Whereas, if you have and 

acceptor, this will give me p-type semiconductor, because it accepts an electron and thus 

creates a hole. So, the conduction is by an excess of holes and the hole has a positive 

charge, it moves in the direction opposite to that of the electron in a electric field. So, 

this is usually from these. So, therefore, you have n-type semiconductors and p-type

semiconductors.



(Refer Slide Time: 24:18)

So, in an n-type semiconductor, in addition to the electrons and holes which are created 

intrinsically by say thermal activation, there are additional electrons which are donated 

by the impurity atoms. And so, the number of electrons exceeds the number of holes,

here n e - the electron concentration is greater than n h - the hole concentration. So, 

electrons are known as the majority carriers. Whereas, in a p-type semiconductor, the 

number of holes exceeds the number of electron, and therefore, holes are the majority 

carriers. Therefore, holes in an n-type material are also known as minority carriers;

similarly, here the electrons are minority carriers. Each impurity atom creates a hole in 

the case of a p-type semiconductor, and the holes move in the direction of an applied 

field contributing to a hole conduction, so the number of holes exceeds that of electron.

The amount of donor or acceptor impurities usually added is extremely small 10 to 100

phosphor ppm - parts per million, so that is the usual concentration. In order to do this, it

is very important that we have an extremely pure basic most crystal material, silicon or 

germanium to which a controlled amount is added.



(Refer Slide Time: 26:28)

So, this is very important and that is why the production of semiconductors is an 

extremely difficult operation involving very importance techniques of crystal growth 

such as these Czochralski technique, zone refining and so on. We will not going to these 

technical aspects. So, the crystal growth crystallization of this pure semiconductor is a 

technology by itself.

(Refer Slide Time: 27:11)



Now if you want to understand the nature of conduction in a quantitative manner, we

have two discuss a in terms of for an intrinsic semiconductor will go by carrier 

concentration, how to determine the carrier concentration in an intrinsic semiconductor.

(Refer Slide Time: 27:20)

In order to know this, we have to know the number of electrons and holes. So, for this we 

have to go back to is so-called electron density a states.

(Refer Slide Time: 28:02)

So, in order to find the concentration of carriers, we have to go to the number density of 

states N of e de which is 4 phi times 2 m by h cross squire to the power 3 by 2 times e 



minus e c to the power half this is because in the band structure of a semiconductor. This 

is taken off the bottom of the conduction band is taken as e and the energy is major from 

this, so that is why the energy term becomes e minus. In addition, we have the Fermi 

Dirac distribution function, which is 1 by exponential e minus e F by k B T plus 1. But at 

high temperatures, when the temperature is sufficiently high that e minus e F by k B T,

the exponential is large compared to this. We can forget about this and this can be 

written as e to the power minus e minus e F by k B T combining these two expressions.

(Refer Slide Time: 29:43)

We get the expressions for the number of electrons in an energy interval e t by de and if I

integrate it from E C to infinity that will give the number of electrons. So, if we carry out 

the integration, we arrive at the result 2 phi m k B T by h cross squire 3 power 3 by 2

into 2 exponential E F minus E C by k B T that will be the carrier concentration. Here of 

course, we do not write m as the mass of the free electrons since this electron e is in the 

periodic potential, we replace it by the m star, the effective mass. And we denote this as 

the effective mass of the electron by writing me star. Similarly we can calculate the hole 

concentration where we have to write instead of f of e should be replaced by 1 minus f of 

e, because this dependence on the probability of a state e not occupied or unoccupied 

when it is empty then the electron get in to it. And therefore, this depends on the number 

of vacancies, so it will be one minus f of e and that again gives you 1 minus 1 by and that 

will give you e to the power e minus e F by… So, they should be use in order to find the 

hole concentration, and we be integrate from the minus infinity to their top of the valence 



band, because that is where the holes exists. So, this is from minus infinity to the top of 

the valence band e V.

(Refer Slide Time: 32:28)

So, n h is integral and that use the result m h star k B T y h cross square 3 by 2 into e to 

the power and E v minus E F by k B T. So, the number of holes and the number of 

electrons whenever the hole is created here then electrons gets exacted automatically. So, 

that number of holes at the number of electrons are equal in an intrinsic semiconductor.

Therefore, n h times n e is what I call an i square in intrinsic carriers concentration, so

that from these relation can find the intrinsic carriers concentration has with a bit of 

algebra this can be shown to be and what is C minus e v that is nothing but a energy gap.

So, this becomes just exponential minus E g by 2 k B T.

Now we are taking the square root. So, we can see that the conductivity which we 

proportional to the carrier concentration in intrinsic carrier concentration will depend 

exponentially on the argument E g by 2 k B T. So, if the energy gap, which is usually as 

the order of one electron volt that is the energy gap. So, and the temperature 300 k, this 

will be the sort of this leads to the known exponential dependence as well as the known 

positive temperature coefficient of a semiconductor.
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Inverting this, we can also find the Fermi energy, it turns out that the Fermi energy is 

three-fourth k B T m h star by m e star plus E c plus E v. If the hole and electron as the 

same effect you mass than this term will become 0 leaving all this and this will be E g by 

2, the average of E c and E v. So, the Fermi energy lies midway between the conduction 

band and the valance band in a semiconductor.

(Refer Slide Time: 36:45)

So, the intrinsic carrier concentration goes the exponential minus E g by 2 k B T.



(Refer Slide Time: 36:59)

This temperature dependent exponential term table shows the variation temperature 

dependence on the factor. So, the intrinsic electrical and conductivity will consist of two 

terms one involving the electron and another involving the hole. Well we can similarly in 

discuss the concentration of majority carriers in an extrinsic semiconductor, we will do 

that next time.

(Refer Slide Time: 37:28)
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Last time, we discussed the carrier concentration and conduction in intrinsic 

semiconductors, but the crucial thing about semiconductors is the possibility to precisely 

control the carrier concentrations through controlled doping of a very pure sample of 

semiconductor. In other words, the entire interest from the point of view of devices and 

semiconductor electronics is based on the fact that there exist extrinsic semiconductors 

contrasted with intrinsic semiconductors which we discussed last time.

(Refer Slide Time: 01:06)

We will discussed the carrier transport in an extrinsic semiconductor in this lecture. It

has already been mentioned that an extrinsic semiconductor is one in which as 

semiconductor, which is extremely pure is doped with donor or acceptor impurities in 

controlled amounts. For example, a sample a silicon is doped with an impurity like 

phosphorous arsenic etcetera to give a donor impurity which modifies the behavior of 

semiconductor completely and which gives the possibility to control this behavior and 

use it in various kinds of physical situations. So, similarly there can be acceptor 

impurities which also inject controlled amounts of holes this inject controlled amounts of 

electronics whereas, l acceptor impurity provides a hole.



(Refer Slide Time: 03:43)

So, we will discuss this mechanism of how to calculate the carrier concentration which is 

the basic information required for technical exploitation of these materials.

(Refer Slide Time: 03:56)

In order to do this, we will start considering the energy levels of a donor impurity in an 

extrinsic semiconductor this is called an n type semiconductor. So, the fifth electron in a 

pentavalent impurity is not able to get tetrahedral bounded to the silicon arbiters know 

that is because the tetrahedral bounding allows four electron. So, the fifth electron is 

loosely bound to the silicon atom the donor such as phosphorous or arsenic is now 



positively charge because it is donated on electron. This loosely bound fifth electron can 

be thought as moving in the never hood of this positively charged atom or ion to be more 

specific the dielectric medium in which this motion takes place is that of silicon. So, we 

consider this in the framework favor of the wee known theory of the hydrogen atom or 

hydrogen like atoms in quantum mechanics.

(Refer Slide Time: 06:03)

And borrow the results for this which is well known the ground state energy of such a 

hydrogen like atom is 13.6 electron volts negative because it is a binding energy and this 

is got from the expression minus m E to the power 4 by 2 into 4 pi epsilon naught x 

square. Now, in this case the moss of the electron is known to be the effective moss m

star in the semiconductor and epsilon naught is replaced by the relative dielectric 

constant epsilon r of silica and the radius of this orbit of this electron that the radius is 

given by.



(Refer Slide Time: 07:21)

And that works out to be 0.53 in a hydrogen like atom now these things again are 

modified by the replacement of the dielectric permittivity by epsilon R epsilon naught,

where epsilon R is the characteristic relative dielectric constant of silicon and also the 

replacement of m the electronic moss by the effect moss in the semiconductor.

(Refer Slide Time: 08:20)

So, there donor energy can therefore, be readily calculated using these expressions and 

using known values at the effective moss and the dielectric constant.



(Refer Slide Time: 08:41)

So, this works out to be E d the energy of the donor atom using the well known result for 

hydrogen atom the 13.6 electron volts this works out to be 20 million electron volt.

(Refer Slide Time: 09:02)

Which is an extremely small quantity and the bore orbit is also rather large. So, the donor 

energy levels lie very close they are very close they are very close to the conduction 

band.



(Refer Slide Time: 09:27)

So, this is shown in the figure you have the conduction band.

(Refer Slide Time: 09:36)

The bottom of the conduction band and the top of the valance band with an energy gap

here and the donor energy level band likes very close donor energy band it is an 

extremely small quantity the distance between them.



(Refer Slide Time: 10:08)

And the radius of this orbit is also very large. So, that is a big boler lap between the 

orbits of the neighboring ions and therefore, this form a a donor band. So, this is a, so

close to the cut bottom of the conduction band that thermal excitation can provide a very 

convenient way of exciting the electrons from the donor levels into the conduction band.

(Refer Slide Time: 10:43)

Their by facilitating conduction. So, the fraction of electrons thus exited thermally or 

otherwise from the donor band to the conduction band is relatively large in comparison 



to the fraction which is exited across the energy gap from the valance band. So, and these

are due to the whole states in the valance band.

(Refer Slide Time: 11:17)

So, the electrons from the donor are the so called majority carriers, because they are in 

very large numbers; whereas, the holes from the valance band are minority carriers in an 

n type semiconductor by following the same argument.

(Refer Slide Time: 11:48)



One can also see that the acceptor energy levels lay very close to the top of the valance 

band. So, this picture gives like this is the conduction band this is the valance band and 

we have acceptor energy band.

(Refer Slide Time: 12:43)

Which lies extremely growth to the top of the valance band and because of this we have 

the majority carriers are holes in this case while electrons are the minority carriers in a p 

type semiconductor. So, this is the overall situation and now we have already see in that 

electron concentration.

(Refer Slide Time: 13:41)



The electron concentration is given as n and that is two into two pi m square k b T by 

square hole to the power 3 by 2 exponential E f minus E f. Similarly, the whole 

concentration is given by a similar expression where it is effective moss of the hole T is 

the temperature.

(Refer Slide Time: 14:36)

So, the product of these two becomes N times p is considering these two taking the 

product of these two expressions. Now these are the partition functions which are given 

by the p exponential factors here.

(Refer Slide Time: 14:41)



Now, the charge in locality requires that N plus N a minus equals p plus N d plus where 

N a is the acceptor atoms which are negatively ionized x N d is the donor atoms

negatively ionized here whereas, the donor atoms you can positively ionized this is 

charge neutrality.

(Refer Slide Time: 16:03)

Now N d concentration of donor atoms can be written as plus N D plus and similarly N

A is N A 0 the neutral acceptor atoms plus N A minus. Now it is rather difficult to 

discuss the general case in the both donors and acceptors.

(Refer Slide Time: 16:35)



A simultaneous present is can be considered only numerically we do not want to do the 

here be deal with

(Refer Slide Time: 16:43)

Only the case of a donor impurities, which is theoretically easier to deal with in an n 

types semiconductor.

(Refer Slide Time: 17:09)

The concentration of donor electrons is N D 0 substituting for and the plus this is N D by 

one plus exponential E f minus. Similarly, we can write P A a similar expression at P A 0

we are talking about the ionized impurities which involve only the spacing between the 



donor level and the bottom of the conduction band and the acceptor level at the top of the 

valance band.

(Refer Slide Time: 17:57)

So, with this we can also say that can be is in gender very large compare to m that is the 

ionized impurity atom concentration is large the main contribution to conduct to 

becomes only from this with that we can an expression for n which is the difference 

between N D 0 and N D minus.

(Refer Slide Time: 18:35)



And therefore, we can do a little algebraic manipulation to get a closed expression in 

terms of.

(Refer Slide Time: 19:09)

So, that gives the concentration and which with a little bit of manipulation again as you 

break a manipulation lives to a simple quadratic equation for the concentration this 

quadratic equation has you form.

(Refer Slide Time: 19:27)

So, for which this quadratic equation can be solved to get a solution for N which has this 

form so that gives the concentration.
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And we can discuss in particular three main cases is one when this quantity under the

square root sign is such that.

(Refer Slide Time: 20:18)

Four N D by N effective exponential E d by k B T, this quantity is very large is 

comparison to one when I can ignore this and write this in terms of this is the so called 

carrier freeze out region. Whereas, the second case is when this factor is small in 

comparison to one, so that this can be neglected and we have a constant concentration.

So, this is the saturation region and then third case.
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Case 3 is at still higher temperatures the factor T enters here the conduction becomes 

intrinsic. So, the figure show the three regions one is the intrinsic range as a function of 

one by T logarithm of the concentration is plotted and you have an intrinsic range then 

this saturation range where the concentration is constant then a fees outrange.

(Refer Slide Time: 22:16)

So, this gives the basic mechanism and basic results of carrier transport in a pure n type 

of semiconductors this can be treated analytically similarly f b type semiconductor also 



can be treated analytically, but as I already said and both are present then this cannot be 

treated analytically, but it has to be done only numerically.

(Refer Slide Time: 22:50)

You know paws on to consider an important distinction between indirect and direct band 

gap semiconductors.

(Refer Slide Time: 23:12)

These are illustrated in the next figure in the direct band gap semiconductor the the 

conduction band the bottom to the conduction band. So, this is the conduction band this 

is the valance band. So, this bottom of the conduction band lies energetically at the same 



value as the top of the valance band, so that the band gap is all the energy needed to 

promote a carrier from the valance band into the conduction band. Whereas, an indirect 

band gap is one in which and you have a slightly lower structure here and whereas, we 

have the valance band here the conduction band energy structure like this. So, the bottom 

of the conduction band lies here while the top of the valance band likes here there do not 

occur at the same k value. So, one needs to promote the carrier from here to this and then 

translate it to this by an amount delta k or h cross omega.

(Refer Slide Time: 25:05)

So, for conduction one has to get a threshold frequency for conduction is just the energy 

gap for a direct band gap for a direct band gap semiconductor, for example, gallium 

arsenide you such a material.
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Whereas in the case of an indirect band gap we have to have in an indirect band gap.

(Refer Slide Time: 25:53)

Semiconductor such as silicon one has to have their omega is given by the condition for 

the wave vector.
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So, it is because of these the gallium arsenide is a useful conductor and for example, 

optoelectronic devices led's semiconductor lasers and so on.

(Refer Slide Time: 26:36)

Next we pass on to a consideration of hole effect hall effect is a very well known 

phenomenon especially in semiconductor.
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So, then a current carrying conductor or semiconductor is placed a magnetic field let us

discuss a semiconductor placed a magnetic field. So, because of the Lorentz force acting 

on a moving charge practically magnetic field you get a lateral displacement of the 

carriers and therefore, there is a its field which is set up in the direction perpendicularly 

directional motion of the charge carriers and the direction of the magnetic field. So, this 

field is known as the hall field and the setting up of this is known as the Hall Effect. So, 

this is in a direction orthogonal to the direction of the motion of the carriers and the 

direction of the magnetic field. So, that is the effect which is known as the classical Hall 

Effect.
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If you have a conductor with one type of charge carriers the situation is extremely simple 

to deal with

(Refer Slide Time: 28:56)

Let us say consider a configuration which you shown in the figure here where the field 

and the current configuration are shown.
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And one can straight away using the Lorentz source law f equals q v cross b where b is 

that of the current and you have a b direction. So, the force the lateral force can be 

readily calculated.

(Refer Slide Time: 29:34)

And therefore, the Hall field can be calculated also, the hall field is given is if the 

direction of motion X…
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The B field is along the z direction the hall field is directed along the y direction. So, this 

will be j y B z by n. Let us write q here to denote the charge in a general way. So, this E

h by j y b z is known as Hall constant and that readily seen to be just 1 by n q.

(Refer Slide Time: 30:35)

So, this proportionally constant is what is seen here and therefore, the Hall voltage can 

straight away be calculated.
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So, this is the typical experimental configuration for measuring the Hall co efficient and

contacts made along to pass the current.

(Refer Slide Time: 30:56)

And a magnetic field is supplied perpendicular to the direction of flow the current, and 

then the contracture made also in the third direction to measure the Hall voltage, and this 

gives the Hall voltage as a function of the applied magnetic field, in different values of 

the magnetic field.
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The hall constant is related to the carrier concentration, so 1 by R H and q magnitude of 

q.

(Refer Slide Time: 31:44)

So, one can straight away measure the carrier density by measuring the Hall constant.

And since the mobility is just therefore, if we know the electrical conductivity and the 

concentration one can determine the mobility as well.
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So, the Hall effect is used extensively in the measurement of the magnetic field, it is used 

as a magnetometer and to measure sign and concentration of charge carrier, and the 

mobility. These are the important applications of Hall Effect measurements.
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Today we will solve some problems on the topic of semiconductors, which we discussed 

the first problem concerns.

(Refer Slide Time: 00:32)



The calculation as a distance between near neighbours in their germanium crystal whose 

lattice parameter is given noise 5.62 Armstrong’s germanium. And silicon both have a 

cubic unit cell in which the structure is that of diamond, which is shown in the figure

with the atoms at noise the origin which is at the vertex of a cube at one vertex of the 

cube 0 0 0. And then at a distance of one fourth one fourth one fourth along the body 

diagonal atoms are at these points noise this is the basic problem in the unit..

(Refer Slide Time: 02:12)

So, this is the unit cell which is shown in figure and we have to simply use geometry and 

distance which is asked is just root of three by root three by 4, which is root of 3 by 16

times 5.62. That is the distance required between the atom at 0 0 0 and the atom at one 

fourth one fourth one fourth, and that works out to be two point four three Armstrong’s

having done.



(Refer Slide Time: 02:50)

The geometrical calculation the crystal structure calculation. We now pass on to the 

calculation of the intrinsic carrier density.

(Refer Slide Time: 03:06)

In silicon which is another well-known semiconductor we are given that the intrinsic 

resistivity at three hundred k is given as 3.16 into ten to the power three ohm metre. So, 

we are also told that the electron mobility well I do not think we have discussed the 

concept of mobility. So, far let me introduce the definition of mobility is the velocity of 

electron per unit electric field, we all know that the current density is in general given as



j is n e v, where n is the carrier concentration and e is the electronic charge v is the 

velocity. So, and we also know that this current density is related to the electric field via 

the conductivity this is the electric field, and sigma is the conductivity electrical as we all 

know this is just ohm's law.

(Refer Slide Time: 05:42)

So, because of these we can write n e v is sigma e and therefore, sigma is n e v by e and 

it is this quantity which we have defined as the mobility. Therefore, sigma is n e mu this 

is a very basic relationship, which gives the electrical conductivity in terms of the carrier 

concentration the charge. And the electron mobility and in this problem we are given that 

the electron mobility in silicon at three hundred k is 0.14 metre square per volt second

the unit of mobility is velocity is metre per second, and the electric field is volt per metre

therefore, this is metre square per volt second.



(Refer Slide Time: 07:02)

So, that is given as 0.14 metre square per volt second, and the mobility of holes.

(Refer Slide Time: 07:09)

Is given as naught 5 point naught 5 and the current density is due to the presence of both 

electrons and holes in the silicon. So, there is a contribution from the motion of electrons 

among states in the conduction band, and also the motion of holes in states in the balance 

band both contribute to the current density. And since the hole is positively charged and 

moves in the direction opposite to that of the electron in the given electric field, therefore

the current density is due to both electrons and holes add up.



(Refer Slide Time: 08:11)

And therefore, we have a general relation using this using this fundamental relation. Now 

I can write n e e mu e plus n h e mu h where e is mod e the sign of the charge is included 

in the directions. Therefore, this is just n e mu e plus n h mu h times mod e and that is the 

general expression for j, and therefore sigma. And we also know that the resistivity rho is 

just one by sigma since it is a cubic material, we do not have to worry about anisotropic 

here sigma and rho are the same scalar quantities with just one value for the entire in all 

the directions inside the crystal. So, we are given the value the resistivity therefore, going 

back to this is equal to one by rho rho is given, and since it is intrinsic material the 

number of electrons is equal to the number of holes. So, let us write it together as n. So, 

that this becomes n e mu e plus mu h.



(Refer Slide Time: 10:14)

So, we have this and we are asked to determine n the intrinsic carrier concentration n,

which is asked which is required is just given by one by rho times mod e noise times mu 

e plus mu h. So, plugging in the values the given values for the resistivity the electronic 

charge is known as standard value and the values of the mobilities are given substituting 

all these we get the value the carrier concentration is 1.06 into 10 to the power 16 per 

metre cube.

(Refer Slide Time: 11:05)

Next, we pass on to a case of intrinsic germanium .



(Refer Slide Time: 11:12)

We are given the intrinsic carrier concentration in germanium at 300 k, and that is given 

as 1.7 into 10 to the power nineteen per metre cube. We are also given the value of the 

density bulk density of germanium as 5.32 into ten to the power three kilograms per 

metre cube, and the atomic weight of germanium is given as seventy 2.59 noise.

(Refer Slide Time: 12:26)
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So, the number of germanium atoms per unit volume can be calculated using allocator 

number the density. And their atomic weight as 4.4 into 10 to the power twenty eight we 

are asked to assume; that the this germanium is doped with pentavalent impurity atoms at

doped with and the doping concentration is one part per million which is ten to the power 

minus 6.

So, this is the number of germanium atoms and the number of impurities. These are 

donor impurities, they donate electrons the number of donors impurities is standard

notation is n d and that is taking this number 4.4 into 10 to the power 28 and 10 to the 

power minus 6, and 10 to the power 22 per metre cube. And we assume that all of them 

are ionised all the impurities atoms are ionised. So, the number of electrons donated

which are the majority carriers this the same number each impurity atom donates an 

electron. So, that is what we call usually n with a subscript e.



(Refer Slide Time: 15:09)

So, we were asked to calculate several quantities; for example the factor by which by 

what factor noise.

(Refer Slide Time: 15:14)

The majority carriers exceed carrier concentration exceeds the intrinsic carrier 

concentration. So, all we have to do is we are given the intrinsic carrier concentration,

and we have determined the number of the majority carrier concentration namely that of 

electrons. So, we divide one by the other and get the factor as the answer is two thousand 

five hundred and eighty eight noise there are 2588 majority carriers for each intrinsic 



carrier. And since we know the number of this is what we know as n i intrinsic 

concentration.

(Refer Slide Time: 16:23)
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And therefore, the hole concentration hole, which is the minority carrier concentration is 

given by n h equals is such that n h times n e is n i square. So, we know n h is n i square

by n e. So, substituting n i and n e we get the value of n h as 6.6 into 10 to the power 

fifteen per metre cube, because we know the majority and minority carrier 



concentrations. And we have been given the mobilities of the electrons, and holes we are 

now in a position to calculate the conductivity contributed by the electrons and holes.

(Refer Slide Time: 17:46)

And hence the total conductivity noise sigma, which as we have seen n e mu e n h mu h

times mod e. So, n e is known n h is known and therefore, we can calculate the 

conductivity and this turns out to be that is the value for the conductivity with the given 

mobility values.

(Refer Slide Time: 18:32)



Next, we pass on to the case of gallium arsenide as we have already seen gallium 

arsenide is a compound semiconductor.

(Refer Slide Time: 18:42)

The gallium and arsenic gallium for the group three and arsenic from group five in the 

periodic table. So, it is a three to 535 compound. And we already saw in the lecture that 

it is a direct band gap semiconductor which means that the bottom of the conduction 

band and the top of the valence band lie exactly one above the other. So, these two are 

just above each other, and this difference in energy is the energy gap whose value is 

given in the case of gallium arsenide as 1.4 electron volts we are also told that this 

sample is evaluated with photons of energy 1.6 electron volts.



(Refer Slide Time: 20:46)

So, the difference in energy one point six and one point four gives you the kinetic energy 

of carriers that is the kinetic energy, and the carriers and since this is say e and therefore, 

the momentum is just root two m e p, therefore the momentum.

(Refer Slide Time: 21:22)

Of course in this case the mass is involved. So, the momentum will be different for the 

electrons and holes because the effective masses are different. So, the momentum of 

electron is root 2 m e star e. So, substituting the effective mass of electron which is given 

as point naught seven times that of the electron free electron therefore, substituting that 



they get at the momentum as 6.835 into 10 to the power of minus 26 momentum 

kilogram meters per second proceeding the same way.

(Refer Slide Time: 22:27)

We get the momentum of holes two m h star e where this is effective mass of the... So, 

that is again given to be 0.68 times that of the free electron. So, substituting this value,

we get the momentum as 6.29 into 10 to the power minus twenty six kilogram metre per 

second 

(Refer Slide Time: 23:08)



In the next problem, we are given data in the tabular form for the resistance of 

germanium.

(Refer Slide Time: 23:21)

The electrical resistance of germanium is given as a function of temperature. So, we are 

given the values in ohm's of the resistance at 300, and 12 k, 354 k, 385 k, and 420 k.

(Refer Slide Time: 23:44)

And we are asked to determine the energy gap at as a function of temperature resistance 

r. So, determine energy gap of germanium that is the question and for this. We know that 

the resistance as the temperature dependence, which has the form where e g is energy 



gap and kb is the Boltzmann's constant therefore, we take logarithms . So, a plot of log r

r log also versus one by t is a straight line whose slope is e g by 2 k b. So, plotting this 

graph of log r versus 1 by t from the given values we get a straight line and the slope 

gives the energy gap in terms of twice the Boltzmann constant. And so we can determine 

the energy gap the energy gap turns out to be point six electron volts from the given data.

(Refer Slide Time: 26:09)
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Next, question concerns the comparison of the conductivity of silicon conductivity 

means always electrical conductivity, in this case silicon is 3.16 into 10 to the power 



minus four at room temperature, and that of germanium is also given at room 

temperature as 2.12 ohm minus one metre minus one four orders higher.

So, we are asked to what temperature; obviously, if silicon is heated the conductivity 

increases if it has to have the same conductivity as germanium to what temperature

should silicon be heated. So, that is the question. So, we have sigma three hundred we 

take this has three hundred k 

(Refer Slide Time: 27:36)

Is for sigma naught exponential minus e g by two kb t for both for silicon as well as 

Germanium. So, we can write it separately for the two of course, the energy gap values 

are different. So, the energy gap in this case is one point one electron volt and in this 

case it is 0.66 as we just know saw. So, we get using this eliminating sigma zero we get t 

s pi 06 kelvin. So, we have to heat silicon to 230 degrees celsius for it to get the same 

conductivity as germanium at room temperature.
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Next, we are given the intrinsic carrier density of germanium as 1.7 at 27celsius, which 

is the same as 300 k as 1.7 into ten to the power 19 per metre cube. So, we are asked to 

calculate the resistivity of course, electrical resistivity we have given electron and hole 

mobilities for germanium they are given at this temperature as point one three nine ten 

point one nine metre square per volt second. Therefore, with this we can write the usual 

conductivity formula where of course n e and n h are the same, therefore we need even 

write this like this where n is the common concentration.



So, the resistivity is one by sigma. So, this is one by sigma, and therefore we can 

calculate from these substituting finding sigma from here and then taking the reciprocal 

we get the value as naught 0.452 ohm metre, which is the answer we have done given a 

problem on silicon 
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Here it is the inverse problem the resistivity is given no it was three resistivity at three 

hundred k. So, we are asked to calculate intrinsic carrier density with the data on electron 

and hole mobility in silicon. So, this is given as point one five and point zero five metre 



square per volt second. So, this is mu e this is mu h noise. So, we have to calculate the 

intrinsic current density which is straightaway given by and... So, substituting all this 

values we get one point six into ten to the power 16.

(Refer Slide Time: 33:18)

The last question concerns the hall effect in a semiconductor with two types of carriers 

the electrons and holes.

(Refer Slide Time: 33:27)

So, we discussed in the lecture the hall effect for a semiconductor with one type of 

carriers now hall coefficient. So, that is what we are asked to determine. So, suppose we 



have an external field, hall effect is an effect which is produced then there is an external 

field applied at right angles to the direction of motion of the carrier in a current carrying 

semiconductor. So, external field is taken along y. So, let us call it e y. So, the electron 

current density will be will be j e y, which will be carrier concentration electron 

concentration times the electron charge times the speed of the electron along the y 

direction. And this in terms as the mobility, it is mu e mobility as electron times the field

e y similarly for the hole current density h y that would be by the same token it will be n 

h e mu h e y. And therefore, the total current as we already discussed the holes will move 

in the direction opposite to that of the electrons they will move along the electric field 

direction. And these electrons will move opposite to the electric field direction, but since 

they are of opposite charges the current densities will be added. So, this will be n e mu e

plus n h mu h times e e y now because of this current.

(Refer Slide Time: 36:23)

And because of the magnetic field is taken it should be at right angles the electric field y

direction as well as the initial current density. So, we take it along the z direction. So, the 

force the Lawrence force on the electron which will be in the direction perpendicular to y 

and z namely x direction. So, we write it as f x e will be e v ye b z the force acting on the 

hole is e v y h b z.
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So, the hall field because of the lateral moment of the electrons and holes there will be a 

hall fields which in the case of the electrons it is directed along the x direction. Therefore 

this is e v y e b z, and for electrons due to motion of electrons in the x direction and for 

holes similarly it will be e ex equals e v y h b z noise. Therefore, ex in these two cases

will be minus v ye b z, which in terms of the mobility it is mu e times e y b z and for this 

is for the electrons. And similarly ex will be e v y h b z which in terms of the mobility is 

mu h e y b z this is for the holes. So, since there is a hall field in the lateral direction 

given by the sum of these two there will be a current density the motion of carriers.

(Refer Slide Time: 39:07)



And there will be a current density contributed from both which is given by the standard 

relation n e mu e. Therefore, the hall current densities due to electrons electron motion

and that will be n e e mu e using this times that electric field. So, that will be minus mu e

e y b z and for the holes. Similarly for hole motion this will be n h e mu h into mu h e y b

z noise. So, the total current a net hall current will be e times n h taking these two n h mu 

h square minus ne mu e square times e y b z. So, this will be the hall current density.

(Refer Slide Time: 41:00)

So, this hall current density will be result in a hall field due to this current density and 

that is e x is j x by sigma by ohm's law again therefore, this will be e times borrowing 

this expression n h mu h square minus n e mu e square into e y b z by the conductivity 

which is n h mu h plus n e mu e times e noise. So, and the hall coefficient r is just ex by j

y b z and that will be borrowing, this expression n h mu h square minus n e mu e square

times e y b z by n h mu h plus n e mu e here times j y b z, and this is nothing but sigma e 

y b z. So, this will give me simplifying substituting for sigma again that will be the hall 

coefficient in a semiconductor containing two carriers. And it is a simple matter to go 

from here, and show that this will lead to the standard expression r equal to one by n e in 

the case of a semiconductor with just one type of carriers.
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Lecture - 19
Dia- and Paramagnetism

Today we will start an important section of Condensed Matter meant physics namely 

magnetism. We have just finished discussing the mechanism of dielectric polarization in 

dielectric materials, how an applied electric field polarizes a dielectric medium and

produces a polarization with various effects such as dispersion, phase transition into the 

ferroelectric field and things like that. We will, now go on a very similar process which 

takes place in magnetic materials. In the case of magnetism instead of a dielectric or 

electric polarization, we will have a magnetization, which is caused by an applied 

magnetic field. So, the analogy is very clear just as the dielectric polarization is 

established by an applied electric field a magnetization is produced in a magnetic 

material by an applied magnetic field. The process by which this magnetization is 

established goes on lines, which is very similar to that of electric polarization. Of

course, there are very significant and important fundamental differences also.

So, in the course of this lecture, and in few subsequent lectures, we will be discussing 

some these processes and mechanisms. We start with magnetism is a well-known 

phenomenon of nature which has attracted the attention of people from time 

immemorial, immemorial. We know that people have talked about load stones in

Sanskrit, people have talk quietly they have talked about [FL], so they have talked about 

how a magnate attracts iron. Similarly, people talked about lodestone, mariners people 

who go voyages in the sea have uses the magnetic compass to know the direction in the 

sea. So, these are all known for a very, very long time since ancient times.

So, magnetism is a phenomenon which is very well known even Aryabhata has talked 

about magnetism. So, the phenomenon of magnetism occupies a central position in 

condensed matter physics. There are reasons for this, not because magnetism in 

particular is a special topic. It is similar to many other topics, but the entities which 

produce magnetization which magnetize a material namely we are known as spins,

magnetic spins, spin angular momentum, it is something which is new to classical 

physics. It is a totally a new degree of freedom in the case of electronic atomic and 



molecular system. But the spins are probably the cleanness to physical entity treat 

theoretically as well as experimentally. The spins give rise to magnetic effects and can 

be studied by a variety of techniques and can be described theoretically we have very 

considerably extends with great success. Now all magnetism mainly arises from the 

electrons of the atoms and molecules; of course, the nuclei also produce magnetic 

effects, we will discuss this later. But for recent which will become clear later on 

magnetism as a phenomenon is mainly due to the electrons in atoms and molecules.

(Refer Slide Time: 04:32)

There is no classical way of describing magnetism. In fact, there is a theorem by there is 

theorem due to Bohr and von Leeuwen if states that if you applied classical statistical 

mechanical considerations to an assembly of electrons which produces magnetism you 

will find that the average magnetization vanishes. So, you cannot account for any 

magnetism using classical theories. Magnetism is essentially a quantum mechanical 

phenomenon. So, this is the first point to be understood that in order to understand 

magnetism, we have to learn quantum mechanics or at least be familiar with the 

fundamental principles of quantum physics, because we are talking about the orbital 

motion of electrons as well as spin of electrons.

Spin is a completely quantum mechanical effect, relativistic quantum mechanical effect.

Even the orbital motion in a finite sample the macroscopic magnetic moment produced 

by the orbital angular moment of electrons vanishes identically by Bohr and von leeuwan 



theorem. Therefore, in order know how this magnetism arises and in order to 

quantitatively, describe the behavior of this magnetic moment one has to apply quantum 

mechanics and quantum statistical physical concepts. So, this is the first point be realized 

next we will ask how there is the magnetic moment is produced for an electron. In the 

case of an electron, we all know that the electron orbiting around the nucleus of an atom 

and similarly in the case of a molecule there are molecular orbital’s in which the electron 

is oppose to the moving.

So, the cause of this motion this orbit to the motion whenever the charge is moving a 

current is produced in that loopso this orbit is like a current carry in loop and the current 

carry in loop always produces a magnetic moment as orsted describe first discovered. So, 

we know that the orbital motion it is very easy to see that the orbital motion of an 

electron will produced magnetic field because the orbit of an electron around the nucleus 

serves as a closed current loop in which the current don not vanish.

So, this is theoretically described by saying that the orbiting electron has an orbital 

angular momentum which is usually denoted by the letter l in books on quantum 

mechanics or j this is orbital, but usually there is also a spin angle of momentum which 

we will discuss later and that is represented by the letter s and. So, there is a total angle 

of momentum disguise as by the letter represented by the letter j. So, all these angular 

momentum are quantized according to the rules of quantum mechanics in other words 

the orbital angle of momentum can only be in units an integral multiples of a 

fundamental unit which is you fundamental usually the fundamental unit of angle of 

momentum is h by two pi or h cross where h is the Planck’s constant.

So, the angle of momentum is measure as j h cross when we say that the angular 

momentum is j what we mean is the angular momentum is j h by two pi if this is. So, 

then quantum mechanics cause or tell us that there is a corresponding magnetic moment

due to this angular momentum which is represented usually by the letter mu and that is 

proportional to this angular momentum orbital angular momentum. So, mu equal to 

gamma j where gamma is known as the magneto gyric ratio. In other words, it is the ratio 

of the magnetic moment to the gyro or angular momentum in world or books this should 

have been written as gyro magnetic ratio gamma is the magneto gyric ratio. So, this only 

means that the magnetic moment vector both mu and j are vector quantities.



So, the magnetic moment is parallel to the orbital angular momentum or the total angular 

momentum. So, this is what this expression says you would like to understand how this 

magnetic moment arises as I said this has been to be done in the framework of quantum 

mechanics.

(Refer Slide Time: 11:19)

So, let us do some basic quantum mechanics by writing the Schrodinger equation of an 

electron in an atom placed the magnetic field in a uniform magnetic field uniform static 

magnetic field whose direction is taken as the z direction. So, how do we write the 

equation the Schrodinger equation for such an electron we know that this electron is in 

the potential of the nucleus. So, we have the standard way in the absence of an applied 

magnetic field the electron Hamiltonian this is the Hamiltonian which is the starting 

point of writing the Schrodinger equation is just equal to p square by two m plus b f I

where p is the linear momentum.

And in quantum mechanics p is an operator which is represented by minus I h cross tell 

m is the mass of the electron b f r is the coulomb potential of the nucleus it is written as b 

f for because we know that the nucleus exerts a centre central coulomb potential. And

therefore, it is function only the distance between the electron and the nucleus.
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So, this gives me the Hamiltonian has minus I h cross del square by two m plus b and the 

Schrodinger equation h psi is just h psi equal e psi where psi is the wave function and e is 

the energy eigen value this Hamiltonian gets modified when an magnetic field is applied 

again quantum theory tells us that.

(Refer Slide Time: 14:37)

In fact, these an electro dynamic result that when there is an applied magnetic field this 

magnetic field has an induction which is given by a vector potential a. So, this is the 

magnetic induction field and a is the vector potential and b o and a are related in this 



form, so if b is constant and uniform directed along is that direction we can write 

between this form and if this is. So, we can choose the the form of the vector potential 

which will give you a b like this can be chosen as half r cross b this is the standard result 

from electro dynamics which can be written in the form.

(Refer Slide Time: 15:53)

So, these are the components of the vector potential in Cartesian coordinates, now when 

such a magnetic field is applied the Hamiltonian gets modified in the following manner.

(Refer Slide Time: 16:05)



If p is the operator p is replaced by the operator p minus e A. So, that is the result of 

classical physics. So, p goes to p minus e A and therefore, the Hamiltonian in a magnetic 

field is written as minus i h cross del minus e A by whole square by two m plus v of r.

So, this is the Hamiltonian and therefore, h psi equals and this is the equal to e psi that is 

the Schrodinger equation. And we can now replace A by these component, and rewrite 

this. When we do this do this we get h cross square by two m del square, that is the first 

term from squaring this. And then we have another term plus e square A square by two 

m and then we have cross term minus i h cross by two m into a dot del plus del dot A.

We cannot just write two del dot A, we have keep the sequences separate.

So, we have two such term one from this del dot A, another from A dot del. Then we

have v of r. So, i z equals psi where we can now substitute for A square and A. So, that is 

the Schrodinger equation which as to be solve in order to find the eigen values of energy 

and that is how we can find the magnetic moment. So, if we do this arrive at this result 

we arrive at this result we have the minus h cross to a del square by two m which is the 

kinetic energy term that is the kinetic energy term of the electron. Then we have minus i

h cross by two m and then we have a dot del plus del dot a in order to a go further we 

choose the gauge we has the freedom to choose the gauge in which we work and we 

choose the coulomb gauge in which del dot a equal zero. If we apply this condition, we 

can show the a dot del and del dot a become the same.
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So, that this becomes then we have well this becomes plus and then this because has a 

minus sign, where we can now replace a square a square is nothing, but we have there b 

naught square by four into x square plus y square is a square. And similarly for A, we 

have those results there. So, A dot del will simply become minus b naught by two into 

minus y d by d x plus x d by d y and remembering that minus I h cross del is the moment 

operator this can be written as where p x p y are the components of p x and y 

components. So, this is nothing, but the z component of the orbital angular momentum l 

z if l is r cross p which is the definition of arbitral angular momentum l z will be plus x p 

y minus y p x therefore, the Schrodinger equation can now b rewritten a very simple 

form.

(Refer Slide Time: 21:10)

I have forgotten e here. So, e h cross by m into l z psi plus one four e square b naught 

square by m two m into x square plus y square psi plus b psi equals psi. Now in we 

cannot need not a and solve this Schrodinger equation to understand what this mean we 

can just look at it by inspection we can interpret the various terms in this energy 

Hamiltonian is nothing, but the energy. So, what is the Hamiltonian operator this term is 

the kinetic energy and this is the potential energy and the Schrodinger equation simply 

says this plus this plus these term is equal to the total energy. Obviously, these are the 

two-terms which arise which contribute to the energy on account of the application of the

static magnetic field study magnetic field.



So, this means we have forgotten b naught by two right. So, this h cross is observed in a l 

zl z is really h cross, because l z is measured in units of h cross. So, this is these are the 

two terms extra terms which represent a magnetic energy the additional contribution to 

energy from the application of the magnetic field one of them is negative, another is 

positive. That is the really reveals what do you mean by a negative energy and a positive 

energy for this we have to just go back to classical electro dynamics.

(Refer Slide Time: 24:11)

And see what happens when a dipole of magnetic moment mu displays at an applied 

magnetic field then the energy is just therefore, we know that the magnetic movement is 

just nothing, but b e minus b e by e b where. So, by looking at the Hamiltonian operator 

if you write it in a and operator form this is just mu operator this minus b h by d b. So, if 

you look at these two terms in the Hamiltonian that has looked what we get the negative 

term gives me mu one is l z b naught that is the contribution. Now similarly the other 

terms is going to give me this is going to give me minus e square del there is A one by 

two m and e by two m. And here it is e square by four into well it should be to have 

square right as we will see about that this square by two m into one by four b naught 

square into h square plus y square.

So, these are negative term a negative magnetic moment whereas, this is a positive 

moment and what is interpretation of this, whenever we have a magnetic field 

magnetizing a material. If you get a magnetic moment which is parallel are in the same 



direction as the applied magnetic field we say that the material is paramagnetic a

paramagnetic material is only one in which the magnetic movement is parallel to

magnetic field whereas, the magnetic moment is anti parallel then we call it a 

diamagnetic material. So, we have two cases here one giving a magnetic moment is 

parallel to the applied magnetic field which is also directed along the z direction. And the 

other gives a term which contributes to a magnetic moment which is anti parallel to the 

magnetic field because this is a positive definite everything is a square and therefore, you 

have a negative sign.

So, it gives a negative magnetic moment which indicates that the magnetic moment is 

anti parallel to the applied magnetic field. So, this is a paramagnetic term this is a 

diamagnetic term. So, by simply looking at the Hamiltonian of the electron an a applied 

magnetic field and looking at the various terms in the presence of the field here in a 

position to say that there are two new contributions to the energy arising from the 

application of the magnetic field one of these contributions is a paramagnetic 

contribution. And the other one is a diamagnetic contribution the paramagnetic 

contribution comes from the alignment of the angular momentum vector in the direction 

of the applied magnetic field.

So, just like in the case of the dielectric polarization these are that there was an electric 

dipole which gets lined up in the direction of the applied electric field creating dielectric 

polarization. In the same way, here we have an electron magnetic moment which is like a 

dipolar magnetic moment, there is no monopole in nature this lowest order magnetic 

moment is that of a dipole. Therefore, the electronic dipole lines itself in the direction of 

the applied magnetic field and gives rise a paramagnetic contribution which as this form 

and this is the gyro magneto gyric ratio e by m is the magneto gyric ratio.

So, this is equal to gamma and in addition the orbital motion of the electron because the 

electron is orbiting round this as a classical explanation. So, if you have an orbiting 

current loop a close current loop in which as charge is circulating this current loop when 

an applied magnetic field is produced A by lends as law there is a back e m f induced 

when therefore, there is a resistance to this motion. And this change is changes the 

acceleration this entry plate is the acceleration of the electron in its orbital motion and 

therefore, this produces the change in the angular momentum. And therefore, induces a 

magnetic moment which is of diamagnetic now this is of course, for an individual



electron if you have a macro scope example in which there are a large number of ten to 

the twenty three are. So, of atoms are molecule each have which contain several electron 

then the makeup quantum mechanical and statistical average now for this the average is 

x square plus y square average. So, the average magnetic moment quantum mechanical 

average is just this this these bracket represent average. So, the quantum-mechanical 

average can be easily figured out.

(Refer Slide Time: 31:18)

Because we known that in Cartesian coordinates r square is x square plus y square plus z 

square, where x y z are the compliments of r for any general direction position vector r.

Therefore, if you take the average with all three directions x y z are equally probable the 

quantum mechanical average of this x square plus y square plus z square is. So, 

substituting this we can calculate the diamagnetic moment using this result.



(Refer Slide Time: 32:02)

So, now we go to the magnetic moment terms and look at them closely. So, we have the 

paramagnetic moment.

(Refer Slide Time: 32:13)

This is the paramagnetic energy the energy due to this because this is the Hamiltonian

operator. So, the magnetic moment is just got by differentiating and this will will remove 

this because they are differentiated the linear term in the Hamiltonian. So, the b goes off.

So, we simply have paramagnetic moment is e by two m into l z. So, that is mu z since it 

is directed along is that direction. So, this is the z component on the paramagnetic 



moment and that is why comparing it with our earlier equation mu equal to gamma j. We

arrive at the result that gamma the magneto gyric ratio is just e by two m and the case as 

the diamagnetic term the result the corresponding result is e square by two m into b 

square will give you another two to be. So, b times r square into two by three into one by 

four which is one by six. So, this will give me minus e square b bb by six m times r 

square where r square is the quantum-mechanical average of the square o f the orbital 

radios of the electron since this is if the electron cloud spherically symmetric. So, this is 

the basic theory due to Langevin theory and this gives you the diamagnetic moment this 

is the contribution to the diamagnetic moment give to one orbiting electron if there are z 

orbiting electron this as to be multiplied by z if there are n atoms are molecule then it has 

to be further multiplied by n.

(Refer Slide Time: 34:56)

So, will give you the total diamagnetic moment in an assembly n atom each containing z 

electrons, so this is the basic theory due to langevin, which explains the diamagnetic 

moment which as a negative sign. The all matter which contain atoms are molecules and 

therefore, orbiting electrons around nuclei or molecular centers because of that every 

material is basically diamagnetic. There is a diamagnetism associated with every atom 

for molecule in nature there is no material which is not diamagnetic this diamagnetism is 

present only when there is a field if the field is removed it vanishes.



So, this is an induce effect diamagnetism is induced and is a reaction to the the applied 

magnetic field which states only as long as the applied magnetic field exists. So, the 

diamagnetic moment vanishes when up field is removed whereas, the paramagnetic term 

is a permanent magnetic moment which is determined by the component of the orbital 

angle of momentum along the direction of the applied field.

So, this situation is very similar to the polarizability of an atom in the presence of an 

applied electric field in the case of dielectric polarization this polarizability is zero once 

the field is applied electric field become is removed. Similarly, the polarizability as well 

as the diamagnetic moment are induced effects whereas, there are permanent dipoles 

electric dipole like water in the case of dielectric polarization. These dipoles get aligned 

along the electric field giving rise to a polar depolarization polarization associated with a 

polar nature of such a dielectric. In the same way, we have materials, which can become 

paramagnetic because there is there are there is an angle of momentum, and associated 

with this angle momentum there is a dipole magnetic magnet and these dipole lines up in 

the direction of the magnetic field. And therefore, this is parallel to the applied magnetic 

field the energy proper contribution is negative because the energy is minus mu dot b the 

paramagnetic moment is present all the time for a material and this will be their only if 

the orbital angular momentum is not zero. So, these are the main difference.

(Refer Slide Time: 38:10)



Now, this e by two m e by two m and as I already told you told you l z is an integer times 

h cross. So, e h cross by two m this as a value 9.27 into 10 to the power minus 24 joules

per tesla. So, this has a special name that is the unit of magnetic moment in quantum 

mechanics in all electronic material. Therefore, this as a special name it is called the 

Bohr magnetron. So, we measure magnetic moments of electron in units of the Bohr 

magnetron. Now this immediately tells us why the the nuclear contribution is not very 

important in the case of magnetism, because of the presence of the mass term here. So, 

the nuclear mass is 2000 times more when that of the electron. So, the nuclear magnetic 

moment is going to be weaker by that factor. So, it is three orders weaker therefore, the 

nuclear magnetism is not seen easily. The thing that is seen generally is the electronic 

magnetic moment. We will stop at this point, and continue next time.
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Today, we continue to do few more examples on magnetism.
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This is an important question, in which we are asked, determine the magnetic ground 

state, its g value of this ground state and the corresponding magnetic moment for all 3d

and 4f ions. Some of these results, we have already used in our discussion of the basic 

ideas of magnetism in solids, but today we will work out the magnetic ground state, the 

corresponding g value and the magnetic moment.

In the case all the members of the 3d and 4f groups in the periodic table. We will

consider the 4f first for reasons, which will become obvious very soon. 4 f ions, which 

are better known as more commonly known as rare earth ions.

The rare earth ions are a group of elements in the periodic table, which correspond to the 

successive filling up of the 4f shell. The 4f shell corresponds to an angular momentum of

3.

So, the electronic configuration is such that the outermost shell is or the 4f and then 5s,

5p and in some cases 5d shells. So, these are the outer electron configurations.

There are of course, close shells inside, which do not contribute anything to the magnetic 

moment. It is only the unpaired electrons in the unfilled shell, which give rise to 

magnetic moment. So, we have the possibility since l is 3, we have m l going from minus 

3 to plus 3 in integral steps.

So, this corresponds to 7 and then there is a spin which can be plus or minus. So, there 

are 2 orientations. So, there are 14 electronic states, 14 electrons can occupy the 4f shell.

So, corresponding to 4f 0, where there is no electrons in the 4f shell and then 4f 1, 4f 2

etcetera 4f 14, all the elements corresponding to these different values of the electron in 

the 4f shell form these are called rare earth group.

We will consider one by one. These elements and the reason why, we consider this first 

rather than the 3d is, because in the 4f group there are outer electrons in the 5s, 5p and 5d

shells, which start of shield the inner 4f electron.



(Refer Slide Time: 04.54)

The spin orbit coupling is relatively strong in comparison to the crystal field effect. So, 

the spin orbit coupling is rather strong and therefore, if we wrote the free electron 

Hamiltonian. We have the single electrons states corresponding to the kinetic energy,

there i, is going from one to the total number plus V of r i this is the kinetic energy, this 

is the potential energy the coulomb interaction energy between the ith electron and the 

nucleus.

(Refer Slide Time: 06.58)



So, this is all single electron terms. These define the angular momentum and spin of 

every individual electron. In addition next in descending order of strength, we have the 

inter electron coulomb repulsion. This is a two electron term so, this couples the 

individual electrons ((Refer Time: 06.55)) and in the Hartree approximation.

Considers this spherical part of this inter electron repulsion and adds this on to the single 

electron potential energy. So, that we get hydrogen like ground state, but there will be a 

non spherical part coulomb repulsion. This non spherical part of the coulomb repulsive 

potential couples the individual l s and s s of the single electron and produces a total 

angular momentum orbital angular momentum L and the total spin angular momentum S.

According to the rules of angular momentum coupling in quantum mechanics, it is these 

l s and s s which define is so, called the spectroscopic terms.

So, these spectroscopic terms are identified by the total value of the orbital angular

momentum, if L is 0, we call it an S term, if L is 1, it is a P term, if L is 2, it is a D term,

if L is 3, it is a F term and then 4, 5, etcetera, it is in alphabetical order G etcetera and so

on. So, these are the terms symbols corresponding to the different angular momentum 

values, orbital angular momentum values.

(Refer Slide Time: 09.54)



Once we know the individual total orbital and spin angular momentum corresponding to 

the ground term. It is the ground stage which matters in magnetic properties and 

therefore, we are interested in the ground term.

(Refer Slide Time: 10.18)

And this term now, is acted on by the spin orbit coupling, which is usually represented in 

the form lambda L dot S, where lambda is the spin orbit coupling constant. And this 

produces a coupling between these orbital and spin angular momenta to produce a total 

angular momentum which is usually represented by the symbol J.

Corresponding to a given value of J, you can have different values of M J, the magnetic 

quantum number which goes from minus J to plus J. There are 2 J plus 1 value,

corresponding to different orientations of the spins magnetic moment of the ions with 

respect to an applied magnetic field. So, now, these correspond to so, called multiplet

different J values correspond to different multiplet, when L and S are coupled. According 

to the rules of angular momentum coupling it can be coupled and the resultant angular

momentum goes from J equal to L plus S to mod L minus S or S minus L depending on 

which is greater in integral steps that is all we get 2 J plus 1 values. Each of these J value 

corresponds to a different multiplet. So, this gives me the multiplet states, spectroscopic

multiplet there are different multiplet corresponding to different values of J of which the 

ground multiplet is what matters for magnetic behaviour.



So, the magnetic ground state is determined by the multiplet which lies lowest on 

account of the fact that the excited states are normally not appreciably populated and are 

ordinary conditions of temperature and magnetic field. So, it is only the ground multiplet 

which determines the magnetic ground state and hence the magnetic behaviour.

(Refer Slide Time: 13.36)

So, the magnetic ground state which we have been asked to determine corresponds to the 

ground multiplet state. This is what we have to determine now in the case of the different 

ions. Once we know the multiplet ground state and the corresponding J value. So, we 

now, know the L S and J values for a given multiplet. A given multiplet is characterised 

by different values of L S and J and then the g factor which is known as the Lande g 

factor is given by corresponding to a given multiplet state with a given J value is given 

by the Lande expression.

So, since we know L S and J for a given multiplet charactered by a particular value of J.

We can immediately find the corresponding g value is also what we have to find out.

Once we know g J the magnetic moment of corresponding to this ground state it is

usually represented by the symbol P effective which is in Bhor magnetrons. So, this P

effective is given by g J into J into J plus 1 to the power half. So, this gives the magnetic 

moment in units of the Bhor magnetron.

So, this is the procedure which we will adopt, in the case of all the 14 rare earth ions,

belonging to the progressive filling up of the 4 f shells. Well if there are no electrons in 



the 4 f shell there is no magnetic moment; obviously, because the shell is not occupied 

by any electron and therefore, the unpaired electron is necessary for it.

(Refer Time: 16.35)

So, let us start from the first case, first rare earth ion, which is cerium 3 plus, which are 

the outer electron configuration of 4f 1 5s 2 and 5p 6. So, there are two electrons in the 

outer 5s shell and six electrons in the outer 5p shell and there is one unpaired electron in 

the 4f shell.

(Refer Slide Time: 16.47)



So, it is this which gives the magnetic behaviour. So, since there we have only one 

electron, the L value is since it is an electron in the f shell, L is 3. And since there is only 

one electron the spin value is also the total spin angular momentum is just that of one 

electron so, S is half. So, you have J which in this case big low lying multiplet

corresponds to L minus S rather than L plus S because, the 4f shell is less than half filled.

So, this is the ground multiplet. So, in this case since L is 3 and S is half this will give 

you 5 by 2. So, the ground multiplet has L equal to 3, S equal to half and J is 5 by 2.

There is a way of denoting this ground multiplet the spectroscopic notation for this 

ground multiplet. The spectroscopic notation usually proceeds by giving the ground term 

symbol which we already saw in this case since L is three it is an f term and it has a 

superscript which has these spin degeneracy and the subscript which gives the J value.

So, that is the standard notation for the ground multiplet. In this case the spin degeneracy

is for a spin of S spin degeneracy is 2 S plus 1; obviously. So, we will have in this case S 

is half so, 2 S plus 1 is so, it is 2 f and the J value is 5 by 2. So, that is the notation for the 

ground multiplet for the cerium 3 plus ion, which is the first member in the rare earth

group with unpaired electron.

(Refer Slide Time: 20.15)

So, having found the ground multiplet, we use the expression for the Lande g factor to

find g J, the g factor corresponding to this multiplet.



(Refer Slide Time: 20.30)

So, this has L equal to 3, S equal to half and J is 5 by 2. So, the Lande expression is for g

J is 1 plus J into J plus 1, which is 5 by 2 into 7 by 2 plus S into S plus 1, which is half 

into 3 by 2 minus L into L plus 1, which is 3 into 4 divided by 2 J into J plus 1. This 

turns out to be 2.958 on simplification. The corresponding magnetic moment is given by 

this formula. So, we write P effective is this value for g J times 5 by 2 J into J plus 1 to 

the power half. So, this turns out to be 2.54 Bhor magnetron.

(Refer Slide Time: 22.11)



So, following the same procedure for the other ions, let us move on to the next ion in the 

rare earth group which has two electrons in the 4f shell this ion is praseodymium 3 plus.

So, it has 4f 2 therefore, the corresponding L value is there are two electrons the Hunts

rules tells you, if I have different values of a mell which I represent here. So, this is M L

equal to minus 3, minus 2, minus 1, 0, 1, 2 and 3 corresponding to L equal to 3.

So, the Hunts rules tells us that the electrons will have a total M L value and hence a 

total L value due to the coupling, which will be correspond to the sum of the two stage

which the electron occupies the corresponding M L values sigma M L corresponding to 

the two states such that this spin multiplicity is maximum. In other words the two 

electrons has spins parallel. So, these are the two states and therefore, we get minus 5 or 

it can also be here. So, it is plus or minus 5 and therefore, the corresponding L value is 5

since this summation is gives you M L as plus or minus 5, the only possibility for this is 

with L equal to 5.

So, that is the total orbital angular momentum of these two electrons and since there are 

two electrons the spins are parallel and therefore, S is 1 and J which is mod of L minus S

because, it is still less than half filled. So, this will be 5 minus 1, 4. So, the ground 

multiplet in the case of the praseodymium 3 plus ion is has the L value 5, which means it 

is an H in the term and the spin multiplicity is 2S plus 1 for S equal to 1 is 3 and the J 

value is 4.
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And if we substitute in the Lande g factor expression for this, the g J turns out to be 4 by 

5 by substitution. And the corresponding effective magnetic moment is 3.58 Bhor

magnetron. Adapting the same procedure for the next ion in the series, which is 

neodymium 3 plus, which has three electrons in the 4f shell and therefore following the 

same procedure sigma M L will be minus 3, minus 2 and minus 1. So, this will be minus 

6.

So, L will be 6 and the S since there are three electrons all with spin parallel in order to 

maximise the spin. So, this will be 3 by 2 and therefore, J will be L minus S which is 9

by 2. So, the ground multiplet for neodymium 3 plus is, L equal to 6 which is an I term, 2

S plus 1 is 4 for S equal to 3 by 2 and the J is 9 by 2. So, this is the ground multiplet. All 

the rare earth ions have the valance is 3 plus the corresponding g J value in the Lande g

factor expression works out to be 8 by 11. And the effective magnetic moment P

effective is 3.62 Bhor magnetron.

(Refer Slide Time: 27.23)

We then move on to promethium 3 plus, which is a short lived isotope. Still it is one with 

four electrons in the 4f shell. So, the corresponding L values since this would be four 

electron this would add zero to this. So, the L remains 6 and the S of course, becomes 2

since there are four electrons with parallel spins therefore, the J is 4.

So, the ground multiplet is again an I term, but with spin multiplicity 5, 2 S plus 1, 5 S

equal to 2 and the J value is 4.
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Next, we consider samarium 3 plus, which has a 4f 5 configuration therefore, the L now,

there are five electrons so, the minus 1 and plus 1 will neutralise each other, leaving us

with sigma M L equal to minus 5. So, that L is 5 and S for five electrons is still 5 by 2

because, all the electrons have parallel spins therefore, the J value is L minus S which is 

5 by 2 and the g J has the value if ground multiplet is represented by L equal to 5.

So, it is again an H term with a spin multiplicity 6 corresponding to a spin of 5 by 2 and

a J value of 5 by 2 this is the ground multiplet. And the corresponding g J value is 2 by 7

and the magnetic moment is having the value 0.84 Bhor magnetrons.

You go to europium 3 plus, which has 6 electrons in 4f shell. So, L is 3 by the same 

procedure S is also 3 because, six electrons with parallel spins. And So, J is 0. So, the

ground multiplet is an F term with spin multiplicity 7 and a J value of 0. So, since this 

has J 0. So, the g value is 0 and the magnetic moment corresponding to that is also 0. Of

course, europium 3 plus is nonmagnetic because, of this, but usually europium 3 plus 

also there is frequently you have a mixed valance with europium 2 plus, which 

contributes to some non zero magnetism, when europium 2 plus is present.
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Next, we have gadolinium 3 plus which has seven electrons in the 4f shell, which can 

accommodate a total of fourteen electrons.

(Refer Slide Time: 31.36)

So, this is a half filled shell, the corresponding L value turns out to be 0, S is 7 by 2 and J

is also 7 by 2. Since L is 0, the ground multiplet has a term symbol, which is that of an S 

term and therefore, this will be 8 S 7 by 2.

So, substituting these values of L S and J we get g J for gadolinium 3 plus as to we just

this spin only value. Since it has only spin contribution, the orbital angular momentum is 



0. So, it has a spin only g factor. And the corresponding magnetic moment has value of 

7.94 Bhor magnetrons, in the same way we can work out the values for the other seven 

electrons.

(Refer Slide Time: 32.46)

So, terbium 3 plus, which has eight electrons in the 4 f shell. So, L is 3, S is 3, J is 6.

(Refer Slide Time: 33.09)

This case the S is 3 because, there are seven electrons with parallel spin and then the

eighth electron goes to this. So, that we have plus 3 and minus 3 cancelling out leaving L

equal to 3. The corresponding g J value since it is more than half L shell the ground 



multiplet is corresponding to L equal to 3 it is an F term with the spin multiplicity of 7

and the J value of 6, the g J value is 3 by 2 and the effective magnetic moment is 9.72

Bhor magnetrons.

Similarly, we consider dysprosium 3 plus, which has 4f 9 configuration. The 

corresponding values are L equal to 5, S equal to 5 by 2 and J is 15 by 2. So, the ground 

multiplet is 6 H 15 by 2 and the g J value is 4 by 3. The magnetic moment is 10.63 Bhor 

magnetrons.

(Refer Slide Time: 35.17)

In the same way one can verify the cases of holmium 3 plus, which have 4 f 10 and the L 

value is 6, S value is 2, J value is 8. So, the ground multiplet is 6. So, it is an I term with 

the 3 no 5 8. So, the g J value is 5 by 4 in this case and the magnetic moment is 10.6

Bhor magnetrons.

Than we have erbium 3 plus, which has 4 f 11 and the corresponding L value is 6, S is 3

by 2 and J is 15 by 2. So, the ground multiplet is again an I term with 4 15 by 2, leading 

to a g J value of 6 by 5 and a P effective of 9.59 Bhor magnetrons.
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We next come to the case of thulium, which has 4 f 12. So, the L value is 5, S value is 1,

J value is 6 and the ground multiplet is an H term with spin multiplicity 3, J equal to 6.

So, the g J is 7 by 6 and the P effective is just 7.57 Bhor magnetrons. Lastly we have

ytterbium 3 plus, which has thirteen electrons in the 4f shell and the corresponding 

values of L S J are, L equal to 3, S equal to half, J equal to 7 by 2 and the ground 

multiplet is F term because, L is 3 2 7 by 2. So, g J is 8 by 7 and P effective is 4.24 Bhor 

magnetrons. We of course, have the final case of lutetium which has the full shell filled 

with all the fourteen electrons.
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So, this corresponds to L equal to 0, S equal to 0, J equal to 0 because, it is a closed shell.

And therefore, it is diamagnetic no Para magnetism no unpaired electrons. So, that 

completes the story about the rare earth ions. We now, move on to the iron group of 3 d

group ions. The iron group corresponding to the progressive filling up of the 3 d shell.

(Refer Slide Time: 39.34)

In this case the spin orbit coupling is weaker when crystal field splitting because; there is 

a crystalline electric field and the 3 d ions, which lie outer most there are no outer 

electron shielding them. So, they lie outermost and therefore, they experience the effect 

of the crystal field and therefore, the crystal field splitting is much stronger than the spin 

orbit coupling.

So, one has to determine the crystal field split ground term. Usually the crystal field is

so; strong that the orbital angular momentum is completely quenched therefore, the only 

angular momentum which contributes to magnetism is the spin angular momentum. So, 

it is spin only magnetism. So, the g factor is that of the spin value.

Pure spin value two close to two and the corresponding magnetic moment is 2S into S

plus 1 to the power half, where S is the spin angular momentum. So, with this 

prescription let us look at the ions in the 3 d shell.



(Refer Slide Time: 41.21)

So, we start with titanium 3 plus which has 3 d 1, one electron.

(Refer Slide Time: 41.32)

So, it has since it is a D electron the ground term is has the symbol D and it is a 2 D term,

which is the ground term therefore, 2S into S plus 1 to the power half. In this case is 2

into half into 3 by 2 to the power half. This is value of the effective magnetic moment,

this is g value.

So, this works out to be 1.73 then we have V 4 plus vanadium, which has also 3 d 1. So, 

its behaviour is similar then vanadium 3 plus has two electrons 3 d 2 and that 



corresponds to a 3 F by the same reasoning as we did for the rare earth ions and the P 

effective in this case is 2.8. We can also have vanadium 2 plus, which is 3 d 3 and the 

spectroscopic ground term is 4 F and the P effective will be 3.87, 2.83 here.

Vanadium 2 plus as well as chromium 3 plus and manganese 4 plus all have the same 

electronic configuration of 3 d 3. And so, they have similar magnetic behaviour. 

(Refer Slide Time: 43.24)

Then we move on to manganese 3 plus, which has four electrons in the 3 d shell and 

therefore, it has a 5 D term giving a magnetic moment of 4.9 Bhor magnet. Then Mn 2

plus which has five electrons. So, it is a half filled shell with a spectroscopic ground term 

of 6 S, it is an S state and so, the P effective since it is an s state. So, it will be 5.92 is 

also the case with iron 3 plus is identical isoelectronic. Then we go on to for s ion which 

has 3 d 6 configuration and again a 5 D ground term with a magnetic moment calculated 

magnetic moment of 4.9 as before. Then we have cobalt 2 plus, which is 3 d 7 and 4 F

ground term P effective of 3.87. Then we have nickel 2 plus, which is 3 d 8 and so, a 3 F

ground term and a magnetic moment of 2.83.
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Finally, we come to copper 2 plus, cuprous ion which has a 3 d 9 configuration. So, it 

has a 2 D ground term with a P effective of 1.73 Bhor magnetrons. So, the experimental

measured magnetic moments are given the last column in this table. So, you can see that 

the agreement with the spin only magnetic moment is fairly good.

(Refer Slide Time: 46.00)

Next you are asked to calculate the molar magnetic entropy, of an assembly of non 

interacting paramagnetic ions. Molar means the number of spins is the Avogadro

number. Each of these has a total angular momentum of J and a magnetic field is applied.



So, if you have a total angular momentum of J, there are 2 J plus 1 orientation possible 

for each ion with respect to the direction of the applied magnetic field.

(Refer Slide Time: 47.10)

Therefore, the magnetic entropy can be calculated readily from the Boltzmann formula,

which gives the magnetic entropy as K B log W, where K B is the Boltzmann constant 

and W is the number of different configurations.

(Refer Slide Time: 47.23)

So, this will be in this case, since there are N ions, N A where N A is the Avogadro

number and therefore, the total probability is K B log 2 J plus 1 to the power N A



therefore, since it is logarithm, it will be and we know that K B N A is just the universal 

gas constant R and therefore, it is R log 2 J plus 1.

So, this is the magnetic entropy that is available in a system of paramagnetic ions and in 

an applied magnetic field. So, you can have the technique of adiabatic de magnetisation 

by means of which we can remove the applied magnetic field suddenly keeping the spins 

in thermal isolation and this entropy causes a cooling of the spins or the paramagnetic 

ions by this technique, which takes these two very low temperatures. this technique has 

been used to achieve extremely low temperatures, it is a refrigeration technique.
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Lecture - 16
Dielectric (Insulating) Solids
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Today, we will to talk about insulators are dialectics now many of the properties have to 

dialectics such as electric polarization dispersion, and absorption of electromagnetic 

radiation by insulating materials dielectric loss dielectric break down, ferroelectric phase

transition, piezoelectricity etcetera can be explained almost without reference to the 

atomic and molecular properties.
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And the point of view of practical applications, they insulators are dielectric constitute an 

important class of condensed matter. The connection between dielectric and optical 

behavior as we will see of such electrically insulating materials also makes them 

interesting from the point of view of modern areas such as non-linear optics which is a 

particularly important modern topic of considerable theoretical and practical importance 

dielectric comprise systems. In which atoms and molecules have closed on nearly closed 

shells structure for electrons. And therefore, they represent another extreme limit of 

electronics structure in contrast with metals in which conduction electrons are free.
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The electrons in dielectric materials are tightly bound to the autonomic course and are 

only only slightly displays from that equilibrium configuration by applied electric fields 

of moderate strength, this is even more true of ions and these smaller displacement are 

adequately describe by a linear response theory.
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In which the linear response theory assumes that the electric de poll movement which 

results from the application of a in electric field of moderate strain it is proportional to 

this strength of the electric field therefore, if p is electric dipole moment. We can write p 

equals epsilon naught alpha e now here e is the electric field p is electric dipole moment

and alpha is the constant of proportionality is known as polarizability. The atom are 

molecule that is a constant which is measured in units of epsilon naught the permittivity 

a free space. So, this p is the induced dipole e moment induced by he applied electric 

field. So, dielectric polarization this is the individual dipole moment induced per atom 

molecule.



(Refer Slide Time: 04:28)

Dielectric polarization capital p is the vector sum of the individual dipole moments some 

of individual dipole moments and usually defined per unit volume of the material. So, if 

there are n such atoms are molecules n atoms or molecules per meter cube.

(Refer Slide Time: 05:23)

So, and then polarization is also related to the applied electric field by the so-called 

electric susceptibility therefore, combining these relations we get immediately x i.



(Refer Slide Time: 05:54)

There is an important vector call the displacement D which is be defined by d equals 

epsilon naught e plus p. Therefore, plugging our epsilon naught e plus p is epsilon 

epsilon naught n alpha e therefore, I have epsilon naught times one plus n alpha times e

and this is usually defined as epsilon naught epsilon naught e where epsilon r is the 

relating dielectric constant. So, that we arrive at epsilon r equal to one plus n alpha and 

and we also known that p is x I e epsilon naught x I e. Therefore, we can write here 

epsilon naught xi e one plus x I e times e. So, comparing this and this we also get one 

plus x I e.

(Refer Slide Time: 07:30)



Therefore we get x e is equal to epsilon r minus one of course, this is relation which is 

valued only in gases. In this case, we as assume that will that we are applying here is the 

same as the field is seen by the atom or molecule this assumption is not valid not valid in 

condensed matter such as liquids and solids. So, this relationship between the electric 

ability and the dielectric constant, why are these so, x e also equal to n alpha. So, this has 

been verified a great extent many gas, but in a condensed material like a solid dielectric 

this assumption this relation is not valid this is known as the Clausius relation this is not 

valid because they dipoles which are present the atomic or molecular dipole interact 

themselves. There is dipole interaction, which produce internal electric fields. So, that 

local electric field seen by a solid at or liquid atom or molecule is different from the field 

which is actually apply, so these local field defers. So, e local is not equal to e applied 

that is the reason why this relationship is not valid how does it differ?

(Refer Slide Time: 10:10)

Now, the local the local electrical field as two contributions, let us look at the process of 

polarization carefully.



(Refer Slide Time: 10:21)

So, I have an atom in which there is an electronic clouds uniform charge density of 

electron and there is a central nucleus now this is a spiracle atom we are assuming it to 

spherical atom to keep the discussions simple such that centre’s of positive and negative 

electric charge is the electron clouds negatively charged and this is the atomic nucleus 

which is positively charged and these two are equals wire. So, that is atom or molecule is 

electrically neutral to start with the centre of the negative charge distribution coincides 

with the central positive atomic charge.

Therefore, negative and positive charge that coincide and therefore, there is no dipole 

moment to start with, but when you apply electric field say this along this direction then 

the the nation electronic clouds moves away. So, this is the way the electronic clouds is 

displaced in this direction from the original position we assumed that it is a rigid 

displacement without any distortion. So, that this moves like this and the positive nucleus 

moves a little bit this is the nuclear charge.

So, this is displays to much smaller extent because the nucleus is much more massive 

therefore, it get displays to a much smaller extent, but still what is happening is the 

central of the negative charge and deposited charge here there is the relative 

displacement and this is what gives you a net dipole moment which is induced, and it is 

present only as long as the electric field this existing the moment you remove the electric 

field is dipole moment will also vanish because the everything will relax back to the 



original situation. So, this is really induced dipole moment. So, this is the mechanism of 

polarization. So, what really happened is that you have in a microscope dielectric you 

have positively charged going in one way and the negative charge is going in another 

way in the presence of an applied electric field. So, this is what gives you a net electric 

polarization, but because of this displacement there is also an electric field due to the 

presence or the positive and negative charges here. So, that gives you an internal electric 

field which depolarizes the original field because it is acting in the opposite direction 

from the positively the negative charge. So, this is the direction of the de polarizing field.

(Refer Slide Time: 14:49)

So, the macroscopic electric field due to the applied field and de polarizing field duty the 

charges, which have been produced on the surface. And the dielectric that gives you a net 

macroscopic electric field which is the sum of the e applied vector sum and the de 

polarization, but in addition to that there is a interaction among the d I polls as I told you 

which produces another contribution to this internal local field. Now this therefore, let us

called it e naught since this is opposing the applied field let us called it e 1. If you have 

an ellipse solid specimen, if you are dielectric is in the shape of an ellipse solid, this de 

polarizing field can be shown to vanish. But in all other geometries in the spicemen 

shape is different from a ellipse solid Debye de polarizing field is not vanishes, but even 

when it is not zero it can be determine for standard geometries such as medical specimen 

or a long thin brought and so on. So, we can find the de polarizing field and add 

iteratively to him apply a electric field to obtain the macro specific electric field.



(Refer Slide Time: 16:42)

So, this is the first part the second part is due to the dipoles which are in the immediate 

neighborhood of suppose you have a dielectric and you have a given atomic dipoles sum 

were here it its immediate neighborhood there are other dipoles. So, these are all 

different dipoles. So, these dipoles interact with this dipoles and therefore, we have de 

pole de pole interaction which produce and internal electric fields this situation can be 

considered quantitatively by considering spherical cavity we assume that we scot out 

dielectric materially of course, a spherical plug and their four now you have charges on 

this surface this cavity.

So, these charges on the surfacewi9ll produce an electric field and then you have 

scooped out this material, but it within this cavity there are dipoles. So, these produced 

an internal electric field this electric field is known as the Lorentz field who calculated 

its value and it can be shown that this field is e internal is p by three epsilon naught for 

sphere and then this this is due to the surface charge. And in addition this, field due to 

the charges in this spherical cavity can be shown to be zero for a cubic material. So, we 

have all these various contribution and the macroscopic electric field e local the local 

electric field is e macroscopic p by three epsilon naught. So, it is this local electric field 

which is seen by the atom or molecule the dipole and therefore, this is what we have two 

here right here.



(Refer Slide Time: 19:42)

So, the individual dipole is now dipole moment is epsilon naught alpha e local where e 

local is given by this therefore, correspondingly p also will change accordingly. So, p is 

n n alpha e local. So, let the substitute this value of pin c what we get.

(Refer Slide Time: 20:18)

So, we will get d is epsilon naught epsilon r e applied and this is equal to epsilon naught 

e plus p. So, this will give me a relation p will be now epsilon naught n alpha into e local 

which is e macroscopic plus p three epsilon naught. So, collecting the p terms there is a 

together p times one minus epsilon naught n alpha by three epsilon naught cancels equals 



epsilon naught alpha e macroscopic. So, because of this we get a modification in the 

clauses relation between dielectric constant. All these are and the and this therefore, we 

can show straightforward to show that epsilon or minus one by epsilon on plus two

equals n alpha by three this is the relation which replaces the Clausius relation for a gas 

the case of a solid or liquid dielectric this relation is known as the Clausius Mossotti 

equation. So, the presence of internal electric field produces this term in the denominator

that is all this is change.

(Refer Slide Time: 22:35)

And since the relative dielectric constant is proportional to the squire or therefore, we 

can also write this relation the Clausius relation in this form where n is the refractive 

index say an optical frequencies. So, in this form this is known as the Lorentz equation.

So, these are the basic equations which govern the relative dielectric constant in the 

refractive index in the case of condensed matter in the case of solids, so this situation.



(Refer Slide Time: 23:42)

So, for example, if you take a material like sodium fluoride common salt, so this as a 

refractive index n which is one point five whereas, this low frequency dielectric constant

are starting dielectric constant is 5.5, 5.6. So, if you squire the refractive index n squire it 

is only 2.25, so in going from low frequency career-high to a frequency the value of 

dielectric constant as comedown. Whereas, the case of material diamond in which the 

bonds are stronger therefore, the low frequency dielectric constant low frequency 

dielectric constant is five point six eight the refractive index at optical frequencies two

point two three eight. So, squire is almost close to the epsilon. So, there is not. So, much 

difference n squire is 5.66. So, you can see that in the case of diamond polarization 

mechanism is entirely electronic the electrons contribute polarization whereas, in the 

case of sodium chloride you have sodium ions and clarian ions forming alternate 

alternatively occupying a cubic lattice. So, these ions also have dipole moments. So, 

there is an ionic polarization in addition to the electronic polarization only.

So, these are all readily how the electrons this start to produce give rise to here dipole 

moment that is the electron is polarization mechanism. So, we have two different 

polarization mechanism one of electron due to the displacement and the electronic cloud 

and the other it is due to displacement at the positive and negative ion as in allowing. So, 

when both are simultaneously present then the ions being massive are not able follow the 

frequency variations such as high frequencies therefore, ionic polarization drops of 

become decreases as the frequency increase.



So, hard high-frequency the electronic contribution alone remains whereas, at low 

frequencies both the ionic and electronic contribution give rise to a large dielectric 

constants static dielectric constant in the case of diamond it is exclusively electronic 

polarization there are no ions there is a covalent solid covalent bonds in the case of 

diamond whereas, here these are ionic bonds. So, when there are covalent bond it is only

electronic polarization which contributes to the polarization, dielectric polarization and 

hence it is the dielectric constant when you consider material like water water as in 

addition to these the water molecule as a very large dipole moment ordinary water.

(Refer Slide Time: 28:25)

So, it has an oxygen and two hydrogen’s. So, this is the structure as the water molecule.

So, the o h o bound angle is approximately tetrahedron something like hundred six 

degree approximately. So, this has a net permanent dipole moment it is because to have 

the positive and negative charges do not coincide and therefore, there is a net dipole 

moment even in the absence of an electric dipole electric field unlike the case of the 

spherical atoms which we saw in the case of electronic cloud.

So, this is known as the polar molecule poll dielectric which is an inherent non vanishing 

dipole moment and these dipoles due to the water molecules tend to reorient themselves

in an applied field. So, reorientation in an applied electric field. So, this gives you in 

addition to the ionic and electronic contribution this gives us an additional orientation all 

contribution to the polarization and then and the dielectric constant.
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So, you have in all three contributions arising from different mechanism to the net direct 

polarization and Hensley dielectric constant.

(Refer Slide Time: 30:52)

What are the polarization electric polarization due to one an electronic polarization two 

and ionic contribution and three orientation all contribution in general all three will be 

present for example, in the case of the water molecule, but when there are no permanent 

dipole moments the electric field induces only electronic ionic contributions the ionic 

contribution is there is only when there are ions which get displays and therefore, give 



you a polarization otherwise when there are no ions the structure like that of diamond the 

electric polarization mechanism is completely electronic.

(Refer Slide Time: 32:00)

So, these are even among dielectric there are different kinds of dielectric and since the 

electrons respond rapidly to even rapid frequency variation of the apply electric field the 

electronic contribution continues very high frequencies of the applied electric field.

Therefore, ions being more massive they are unable to follow the rapid field variation of 

a certain frequency therefore, this ionic contributions are present only at will relatively 

low frequency similarly the orientation and the permanent dipole I gain happen at a 

relatively lower frequencies at the applied electric field.

So, the electronic contribution is usually the ultraviolet range ultraviolet frequencies the 

ionic contribution are in the infrared range and this is orientation contribution occurs the 

microwave frequency. So, as you change the frequency at the applied electric field and 

go through micro-wave infrared and ultraviolet ranges of frequencies these various 

contribution will give rise to polarization and n contribute to the dielectric constitute.
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So, the dielectric constant is frequency dependent and it is frequency dependence which 

gave rise to a frequency dependent refractive index because epsilon disproportional to n 

squire and therefore, refractive index determines the phase velocity of electromagnetic 

wave in any given dielectric medium therefore, you can see that the phase velocity 

changes and this is what we know has dispersion. So, the phenomena of dispersion give 

rise to the arises from the frequency dependent of the dielectric constant.
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Now, let us consider this electronic polarization mechanism in a little detail when we 

already saw that the electrons in a dielectric material or bound to the parent atoms and 

molecules under displaced by the electric field. So, in the static limit when the electric 

field is a static electric field the atomic polarized ability can be calculated using cause 

theorem.

(Refer Slide Time: 35:19)

So, we assume a spherical atom and we apply cause theorem it is well-known in electro 

statics.
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So, if we consider gauss theorem we can write e f r for a spherical atom the electric field 

is radically directed that is why I am writing times four pi x cube where x is the relating 

displacement between the electron and the nuclear charges. Therefore, this will be this 

will be the electric field and this is gauss theorem giving you the flux duty the electric 

field and this is given by the charge divided by epsilon naught. Now if the charge 

electronic charges is distributed over and atom of radius a a is the radius at the atom.

Then the electronic charge is sphere over a volume four third pi cube of which we want 

to calculate be fraction of this charge intersected by spherical region of radius x 

therefore, this will be fourth third pi x cube.

Therefore, that is a how you get the fourth third pi cancels leaving you this fraction this 

is the fractional as the electronic charge which is closed. And therefore, this gives me the 

e x as e e times epsilon naught into for pi a cube with a minus sign in order to show the

moment as the negative sign the charges negative. So, the dipole moment this is the 

induced dipole moment. So, this gives me comparing it with epsilon naught alpha e 

where alpha is polarized ability we arrive at polarized ability as four pi a cube. So, the 

polarized ability at the atom a spherical atom is simply four pi times the cube of the 

atomic radius the polarizability is proportional to the atomic volume let us now consider 

we will consider in the next discussion what happens when we go from a static field to 

be a frequency dependency in applied alternating field we will consider this.



UNIT-III-Dielectric and Magnetic properties of materials 
 

Syllabus:  

Dielectric constant and polarization of dielectric materials - Types of polarization  Equation 
for internal field in liquids and solids ( one dimensional)  Clausius Mosotti equation  Ferro 
and Piezo electricity (qualitative)  Frequency dependence of dielectric constant- Important 
applications of dielectric materials.  

Classification of dia, para and ferromagnetic materials. Curie Temperature Hysterisis in 
ferromagnetic materials. Soft and Hard magnetic materials. Applications.    

 
 

Introduction 
 Dielectrics are insulating or non-conducting ceramic materials and are used in many 
applications such as capacitors, memories, sensors and actuators. Dielectrics are insulating 
materials that exhibit the property of electrical polarization, thereby they modify the dielectric 
function of the vacuum. A dielectric material is any material that supports charge without 
conducting it to a significant degree. In principle all insulators are dielectric, although the 
capacity to support charge varies greatly between different insulators. Although these materials 
do not conduct electrical current when an electric field is applied, they are not inert to the electric 
field. The field may cause a slight shift in the balance of charge within the material to form an 
electric dipole.  
  
Thus the materials is called dielectric material. 
 
Dielectric materials are used in many applications, from simple electrical insulation to sensors 
and circuit components. 
 
Faraday was carried out the first numerical measurements on the properties of insulating 
materials when placed between the two parallel plates (capacitor), those materials, he called as 
dielectrics. He has found that the capacity of a condenser was dependent on the nature of the 
material separating the conducting surface. This discovery encouraged further empirical studies 
of insulating materials aiming at maximizing the amount of charge that can be stored by a 
capacitor. In search of suitable dielectric materials for specific applications, these materials have 
become increasingly concerned with the detailed physical mechanism governing the behavior of 
these materials.  
 

The difference between dielectric material and insulator depends on its application. 
Insulating materials are used to resist flow of current through it, on the other hand dielectric 
materials are used to store electrical energy. In contrast to the insulation aspect, the dielectric 
phenomena have become more general and fundamental, as it has the origin with the dielectric 
polarization. 



 
Electric dipoles: 

Upon application of a dc or static electric field, there is a long range migration of charges. 
However, there is a limited movement of charges leading to the formation of charge dipoles and 
the material, in this state, is considered as polarized. These dipoles are aligned in the direction of 
the applied field. The net effect is called Polarization of the material. 
 
A dielectric supports charge by acquiring a polarisation in an electric field, whereby one surface 
develops a net positive charge while the opposite surface develops a net negative charge. This is 
made possible by the presence of electric dipoles  two opposite charges separated by a certain 
distance  on a microscopic scale. 

If two discrete charged particles of opposite charges are separated by a certain distance, a 
dipole moment  arises. 
 
 
 
 
 
 
 
 
2. If the centre of positive charge within a given region and the centre of negative charge within 
the same region are not in the same position, a dipole moment  arises. For example, in the 
diagram below the centre of positive charge from the 8 cations shown is at X, while the centre of 
negative charge is located some distance away on the anion. 

The second view of dipole moment is more useful, since it can be applied over a large area 
containing many charges in order to find the net dipole moment of the material. 

The dipoles can be aligned as well as be induced by the applied field. 



Note that in the equation for dipole moment, r is a vector (the sign convention is that r points 
from negative to positive charge) therefore the dipole moment  is also a vector 
 
Electric field intensity or electric field strength ( E ) 

The force experienced by a unit test charge is known as electric field strength E 

         

where  is the permittivity or dielectric constant of the medium in which electric charge is 

placed. For vacuum  = o = 8.854 X10-12Fm-1 

 
 
Electric flux density or electric displacement vector ( D) 

The electric flux density or electric displacement vector is the number of flux lines 
crossing normal to a unit surface area. The electric flux density at a distance from the point 
charge Q is  

      

 then from (1) and (2)           D =  E        (3) 
  
 

Dielectric constant ( r) 
The dielectric constant of a material is defined as the ratio of the permittivity of the 

medium ( ) to the permittivity of free space ( o). It can also defined as the ratio of the 
capacitance with dielectric (Cd)  and  with air ( CA)  between the plates. 

       

Capacitance: The property of a conductor or system of conductor that describes its ability 
to store electric charge. 

 
 where 

 
C is capacitance of capacitor 
q is charge on the capacitor plate 

V is potential difference between plates 
A is area of capacitor plate 

mittivity of medium 
d is distance between capacitor plates 

 
Units: Farad . 

Polarization 
When an electric field is applied to a material with dielectrics, the positive charges are 

displaced opposite to the direction of the field and negative charges displaced in the direction of 
the field.  The displacement of these two charges create a local dipole, creation of dipole by 
applying electric field is called as polarization. 



Polarization is defined as induced dipole moment per unit volume. 

       

Polarisability 
 The polarization P is directly proportional to the electric field strength E 

       

Where  proportionality is constant called as polarisability. The polarisability is defined as 
polarization per unit applied electric field. If the material contains N number of dipoles per unit 
volume then  

                       
 

 

Relation between polarization and dielectric constant  
 
 
 
 
 
 
 
 
 
 
 
Let us apply Gauss theorem for parallel plate condenser. 

                                  

                        1) 

 
 
Let a dielectric slab placed between two plates. Due to polarization, charges appear on the two 
faces of the slab, and establish yet another field within the dielectric  media. Let this field be . 
The direction of  0.  
 
The resultant field E in the material can be written as,  
 
                                                  E = E0-  



 

p is the charge/unit area on the inserted dielectric slab surfaces, then by following equation 
(1), we write, 

                             

From (1), (2) and (3),  

     `                       

or 
                                                

 
Since the magnitude of polarization P = dipole moment/ Unit Volume 
                              But dipole moment = induced charge X distance 
Therefore      
                              P =  induced charge/ Area=  

 
We know that electric displacement fieldor electric flux density  D is given by charge /unit area  
 
                                  D = q/A= 

Therefore Equation 4 becomes  
 

                                     

 

                                           5) 

in free space where there is no dielectric P=0 

   

But in dielectric media the D changes. From electrostatics 

                                        

From (3)  

      

          

                        

 

         

Where    is electric suscepti  
 
Since P and E are vectors eqn (6) can be written as  



 

                          

This equation represents polarization vector. 
 

 
 
 
 
 
 
Types of polarization  

Dielectric polarization is the displacement of charge particles with the applied electric 
field. The displacement of electric charges results in formation of electric dipole moment in 
atoms, ions or molecules of the material. There are four different types of polarization, they are 
listed below. 

1. Electric polarization,     
2. Ionic polarization,      
3. Orientation polarization 
4. Space charge polarization  

 
Electric polarization 
 The displacement of the positively charged nucleus and the negatively charged electrons  
of an atom in opposite directions, on application of an electric field, result in electronic 
polarization. 
 
On applying a field, the electron cloud around the nucleus  shifts towards the positive end of the 
field. As the nucleus and electron cloud are separated by a distance, dipole moment is created 
within each atom. The extent of this shift is proportional to the field strength. 
 

 Induced dipole moment      

        

 Where is called electronic polarizability. The dipole moment per unit volume is called 

electronic polarization.  

 It increases with increase of volume of the atom.  

 This kind of polarization is mostly exhibited in monoatomic gases.(e.g. He, Ne, Ar, Kr, 
Xe etc..) 



  It is independent of temperature. 

 It occurs only at optical frequencies (1015Hz) 

 Vast fast process: 10-15~10-16s. 

Calculation of electronic polarizability:  
Electronic polarization can be explained by classical model of an atom in gasses. In gases the 
atoms are assumed that the interaction among the atoms is negligible. Here the nucleus of charge 
Ze is surrounded by an electron cloud of charge Ze distributed in the sphere of radius R.  
    
 

                       Charge density,          

 When an electric field E is applied, the nucleus and electrons experience Lorentz force of 
magnitude ZeE in opposite direction. Therefore the nucleus and electrons are pulled apart. As 
they are pulled apart a Coulomb force develops between them. At equilibrium these two forces 
are equal and nucleus and electron cloud are separated by a small distance x.  
 
 
 
 

 

 

 

 

 

     Lorentz force =  ZeE        

  Coulomb Force = Ze X  

The charge enclosed =    

  From equation (1)                              =    

                                                           =    



Hence Coulomb force is =  X       

At equilibrium Lorentz force = Coulomb force (equation (2) equal to (3)) 

     

                  

The displacement of the electron cloud is proportional to applied electric field. 

 The electric dipole moment    

           

                (5) 

 Where is called electronic polarizability.                             

 

Where N is the number of atoms/m3 

But polarization                  

                                                       or    

Ionic Polarization

 Ionic polarization occurs in ionic solids such as NaCl, KBr, and LiBr. When an 
electric field is applied to an ionic solid the positive and negative ions displace to their respective 
polarities creating an electric dipole this is called as ionic polarization. 

 In the absence of an electric 
field there is no displacement of ions. 
When an electric field is applied an induced 

dipole moment i is produced.  

            Let x1 and x2 be the displacement of 
positive and negative ion respectively. 
Then the induced dipole moment. 



   

   Let F be restoring force F 

  

From mechanics the spring constant of mass attached to a spring is given by  =m 2 

At equilibrium the Lorentz force = restoring force 

       

Therefore       Then    

  Where is called as ionic polarisability             

Orientation Polarization 

Orientation polarization occurs only in polar molecules (the molecules which have 
permanent dipole moment eg H2O, Phenol, etc.). When an electric field is applied to a polar 
molecule, the dipoles experience a torque and try to align parallel to the applied field.  

       Consider a polar molecule subjected to an 
electric field E. The alignment of electric dipole 
with the electric field is similar to the alignment 
of magnetic dipole with the applied magnetic 
field in paramagnetic material. 

The expression for polarization can be obtained 
from the theory of paramagnetism.  

   The  orientation polarization is given as  

           

 Where is called as orientation polarisability     

 

Space charge polarization  



   
Space charge polarization occurs due to the 
accumulation of charges at the electrodes or at 
interfaces in a multiphase materials. 

In the presence of an applied field, the mobile 
positive ions and negative ions migrate toward the 
negative electrode and positive electrode 
respectively to an appreciable distance giving rise to 
redistribution of charges , but they remain remains 
in the dielectric material (electrode is blocking). The space charge polarization can be defined as 
the redistribution of charges due to the applied electric field and the charges accumulate on the 
surface of the electrodes. It occurs when the rate of charge accumulation is different from rate of 
charge removal.  Space charge polarization is not significant in most of the dielectric materials. 
       

    Internal field in liquids and solids (one dimensional)     
 In gases state the atoms are separated by large distances and the interaction between 
the atoms can be neglected. When an external electric field E is applied, the intensity of the 
electric field experienced by an atom in gases state will be equal to the applied electric field E.  
 In solids and liquids, the atoms are close to each other leading to strong interaction 
between them. In solids and liquids the intensity of the electric field at a given point of the 
material is not equal to the applied electric field but equal to internal field which is the sum of 
applied electric field and field due to other dipoles present in the material. 

    Internal field   Ei =E+E`      

 The internal field can be calculated by Epstein model in the case of one dimensional 
atomic array. 

Electric field along the axis of an electric dipole  

 Consider an electric dipole of length 2d and charge Q, the field along the axis of the 
dipole at point A is the sum of the electric field due to  +Q and Q. 

  The electric field due to +Q at point A is  

  The electric field due to +Q at point A is  

 Electric field of dipole at A is  

                           



 since x >> d    (x-d)2   (x+d)2    x2   then  

               

 since 2dQ = i                        

  
 
 
 
 
 
Consider an array of one dimensional atoms along x- axis. The all the atoms are similar, equally 
spaced  and have induced electric dipole moment i in an applied electric field E. The electric 
field experienced at the A is the sum of electric fields of other dipoles and applied electric field 
E.  
 
 
 
 
 
The electric 
field at A due to 
the induced dipole B and L which are at a distance x is 

      

The electric field at A due to the induced dipole C and M which are at a distance 2x is  

      

Therefore the field due to other dipoles is 
 
   B + EL+EC+EM+ED+EN         
 

   

   

      where  

   

  Therefore the internal field       



 The local field in a three dimensional solid is similar the above equation the number 
density N of atoms replaces 1/a3. Since i=P and  is replaced by . Then the internal field 
is  

           

 

                        

The field given by the above equation is called Lorentz field. 

Clausius - Mosotti equation 

 Let us consider elemental solid dielectric which exhibits only electronic polarization. If 

e  is the electronic polarisability per atom, it is related to the bulk polarization P through the 
relation  

            

            

Where N is the number of atoms per unit volume and Ei is the local field using the relation (5) 

           

By using the relation between the polarization and permittivity we have  

           

           

Substitute the value of E from (10) in (8) 

      

      



          

The above equation is known as Clausius Mosotti equation which is valid for nonpolar solids 

 
 
Dielectric loss: 
 

 Dielectric loss is the dissipation of energy through the movement of charges in an alternating 
electromagnetic field as polarisation switches direction. 

An efficient dielectric supports a varying charge with minimal dissipation of energy in the form 
of heat is called dielectric loss.  There are two main forms of loss that may dissipate energy 
within a dielectric. In conduction loss, a flow of charge through the material causes energy 
dissipation.  

Dielectric loss is especially high around the relaxation or resonance frequencies of the 
polarisation mechanisms as the polarisation lags behind the applied field, causing an interaction 

eating. This is illustrated by the 
diagram below (recall that the dielectric constant drops as each polarisation mechanism becomes 
unable to keep up with the switching electric field.) 

Dielectric loss quantifies a dielectric material's inherent dissipation of electromagnetic 
energy into, e.g., heat. 
 
 It can be represented  in terms  loss tangent tan defined: 
 

 
 
Dielectric Breakdown : The dielectric breakdown is the sudden change in state of a 
dielectric material subjected to a very high electric field , under the influence of which , the 
electrons are lifted into the conduction band causing a surge of current , and the ability of 
the material to resist the current flow suffers a breakdown . 

 
Or 
 
When a dielectric material loses its resistivity and permits very large current to flow through it, 
then the phenomenon is called dielectric breakdown 

Or 

At high electric fields, a material that is normally an electrical insulator may begin to conduct 
electricity  i.e. it ceases to act as a dielectric. This phenomenon is known as dielectric 
breakdown. 

 



 
Frequency dependence of polarizability: 
 

On application of an electric field, polarization process occurs as a function of time. The 
polarization P(t) as a function of time. The polarization P(t) as a function of time t is given by 
 

P(t) = P[ 1- exp ( - t / tr )] 
 

Where P  max. Polarization attained on prolonged application of static 

field. tr  - relaxation time for particular polarization process 

The relaxation time tr  is a measure of the time scale of polarization process. It is the time 
taken for a polarization process to reach 0.63 of the max. value. 

 
Electronic polarization is extremely rapid. Even when the frequency of the applied 

015 Hz), electronic polarization occurs during 
every cycle of the applied voltage. 

Ionic polarization is due to displacement of ions over a small distance due to 
the applied field. Since ions are heavier than electron cloud, the time taken for 
displacement is larger. The frequency with which ions are displaced is of the same 
order as the lattice vibration frequency (
there is no ionic polarization. If the frequency of the applied voltage is less than 
1013 Hz, the ions respond. 

 
Orientation polarization is even slower than ionic polarization. The relaxation time for 
orientation polarization in a liquid is less than that in a solid. Orientation polarization 
occurs, when the frequency of applied voltage is in audio range (1010 Hz). 

 
Space charge polarization is the slowest process, as it involves the diffusion of ions 
over several interatomic distances. The relaxation time for this process is related to 
frequency of ions under the influence of applied field. Space charge polarization 
occurs at power frequencies (50-60 Hz). 

 

 

 

 

 

 

 

 



Frequency Dependence of dielectric constant 

 When a dielectric material is subjected to an alternating field, the polarization component 
required to follow the field in order to contribute to the total polarization of the dielectrics. The 
relative permittivity which is a measure of the polarization also depends on the frequency. The 

dependence of  r on frequency of the electric field is shown in the figure. 

  

 At very low frequency, the dipoles will get sufficient time to orient themselves 
completely with the field and all types of polarization exist. Since the dielectric is characterized 

by polarisability  (  = e + i + o ) at low frequency  i.e at radiofrequency region the dielectric 
constant will be due to all polarisability.  

 The orientation polarization, which is effective at low frequencies, is damped out for 
higher frequencies. In the microwave region the dipoles fail to follow the field and the 

polarisability reduces to (  = e + i), as a result r decreases to some amount. 

 In the IR region the ionic polarization fails to follow the field so the contribution of ionic 
polarization dies away. In this region only electronic polarization contributes to the total 

polarization. Therefore (  = e) the r still decreases and only electronic polarization exist.    

We know that       

Then  the relative permittivity is               

 In the ultraviolet region even the electron cloud could not follow the field and electronic 
polarizability becomes almost zero and the permittivity becomes one. 

      

  For  example at low frequency the dielecric constant of water at room temperature is 
about 80, but it fall to about 1.8 in the optical region. 

 



Frequency Dependence of dielectric loss: 

Dielectric loss tends to be higher in materials with higher dielectric constants. This is the 
downside of using these materials in practical applications. Dielectric loss is utilised to heat food 
in a microwave oven: the frequency of the microwaves used is close to the relaxation frequency 
of the orientational polarisation mechanism in water, meaning that any water present absorbs a 
lot of energy that is then dissipated as heat. The exact frequency used is slightly away from the 
frequency at which maximum dielectric loss occurs in water to ensure that the microwaves are 
not all absorbed by the first layer of water they encounter, therefore allowing more even heating 
of the food. 

 

 

 

 

 

 

 

 

 

 

Ferroelectrics  

 Below certain temperature it is found that some materials spontaneously acquire an 
electric dipolemoment. These materials are called as ferroelectric materials or ferroelectrics.The 
temperature at which ferroelectric property of the material disappears is called as ferroelectric 
Curie temperature.  

  Ferroelectric materials are anisotropic crystals which exhibit a hysteresis curve P versus 
E which can be explained by domain hypothesis. 

 

Ferro electricity: Ferro electric materials are an important group not only because of 
intrinsic Ferro electric property, but because many possess useful piezo electric, 
birefringent and electro optical properties. 

 
The intrinsic Ferro electric property is the possibility of 



reversal or change of orientation of the polarization direction by an electric field. This 
leads to hysteresis in the polarization P, electric field E relation , similar to magnetic 
hysteresis. Above a critical 
temperature, the Curie point Tc , the spontaneous polarization is destroyed by thermal disorder. 
The permittivity shows a characteristic peak at Tc. 

 
 
 
 

 

 

 

 

 

Piezo  Electric Materials and Their Applications: Single crystal of quartz is used for 
filter, resonator and delay line applications. Natural quartz is now being replaced by synthetic 
material. 

Rochelle salt is used as transducer in gramophone pickups, ear phones, 
hearing aids, microphones etc. the commercial ceramic materials are based on barium titanate, 
lead zirconate and lead titanate. They are used for high voltage generation (gas lighters), 
accelerometers, transducers etc.  Piezo electric semiconductors such as GaS, ZnO & CdS are 
used as amplifiers of ultrasonic waves. 
 
Applications of Dielectric Materials:  
 

Almost any type of electrical equipment employs dielectric materials in some form or another. 
Wires and cables that carry electrical current, for example, are always coated or wrapped with 
some type of insulating (dielectric) material. Sophisticated electronic equipment such as 
rectifiers, semiconductors, transducers, and amplifiers contain or are fabricated from dielectric 
materials. The insulating material sandwiched between two conducting plates in a capacitor is 
also made of some dielectric substance. 

Liquid dielectrics are also employed as electrical insulators. For example, transformer oil is a 
natural or synthetic substance (mineral oil, silicone oil, or organic esters, for example) that has 
the ability to insulate the coils of a transformer both electrically and thermally. 

 

 

 

 

 



1. Capacitors 

 

Charge separation in a parallel-plate capacitor causes an internal electric field. A dielectric 

(orange) reduces the field and increases the capacitance. 

Commercially manufactured capacitors typically use a solid dielectric material with high 

permittivity as the intervening medium between the stored positive and negative charges. This 

material is often referred to in technical contexts as the capacitor dielectric.  

The most obvious advantage to using such a dielectric material is that it prevents the conducting 

plates, on which the charges are stored, from coming into direct electrical contact. More 

significantly, however, a high permittivity allows a greater stored charge at a given voltage. This 

  between 

. In this case the charge density is given by 

 

and the capacitance per unit area by 

 

greater capacitance. 

Dielectric materials used for capacitors are also chosen such that they are resistant 

to ionization. This allows the capacitor to operate at higher voltages before the insulating 

dielectric ionizes and begins to allow undesirable current. 

2.  Dielectric resonator 

A dielectric resonator oscillator (DRO) is an electronic component that exhibits resonance of the 

polarization response for a narrow range of frequencies, generally in the microwave band. It 

consists of a "puck" of ceramic that has a large dielectric constant and a low dissipation factor. 

Such resonators are often used to provide a frequency reference in an oscillator circuit. An 

unshielded dielectric resonator can be used as a Dielectric Resonator Antenna (DRA). 



 

3. Insulators- 
Required Qualities of Good Insulating Materials: The  required qualities can be 
classified as under electrical, mechanical, thermal and chemical applications. 
i) Electrical: 1. electrically the insulating material should have high electrical 
resistivity and high dielectric strength to withstand high voltage. 
2 .The dielectric losses must be minimum. 
3. Liquid and gaseous insulators are used as coolants. For example transformer oil, 
hydrogen and helium are used both as insulators and coolant.
ii) Mechanical: 1. insulating materials should have certain mechanical properties 
depending on the use to which they are put. 
2. When used for electric machine insulation, the insulator should have sufficient 
mechanical strength to withstand vibration. 
iii) Thermal: Good heat conducting property is also desirable in such cases. The 
insulators should have small thermal expansion and it should be non-ignitable. 
iv) Chemical: 1. chemically, the insulators should be resistant to oils, liquids, gas 
fum  
2. The insulators should be water proof since water lowers the insulation 
resistance and the dielectric strength. 

Other Applications: 

Solid dielectrics are perhaps the most commonly used dielectrics in electrical engineering, as 
very good insulators. Some examples include porcelain, glass, and most plastics. 
Air, nitrogen and sulfur hexafluoride are the three most commonly used gaseous dielectrics. 

Industrial coatings such as parylene provide a dielectric barrier between the substrate and its 
environment. 

Mineral oil is used extensively inside electrical transformers as a fluid dielectric and to assist in 
cooling. Dielectric fluids with higher dielectric constants, such as electrical grade castor oil, are 
often used in high voltage capacitors to help prevent corona discharge and increase capacitance. 

Because dielectrics resist the flow of electricity, the surface of a dielectric may 
retain stranded excess electrical charges. This may occur accidentally when the dielectric is 
rubbed (the triboelectric effect). This can be useful, as in a Van de Graaff 
generator or electrophorus, or it can be potentially destructive as in the case of electrostatic 
discharge. 

Piezoelectric materials are another class of very useful dielectrics which are used for transducers 
and sensors. 

Ferroelectric materials often have very high dielectric constants, making them quite useful for 
capacitors. 

 
 
 
 



Magnetic Materials 

Classification of dia, para and ferromagnetic materials. Curie Temperature Hysterisis in 
ferromagnetic materials. Soft and Hard magnetic materials. Applications.       
 
Introduction 
 The materials that can be magnetised are called as magnetic materials 
Magnetic dipoles and magnetic dipole moment 
 Any two opposite poles separated by distance constitute an magnetic dipole. A magnet is 
a dipole which  has north pole and south pole and the length of the magnet is the distance of 
separation. 
Magnetic dipole moment is the product of magnetic pole strength (m) and length of the magnet(l)  

                                                         

Magnetic field  intensity (H) 
  The force experienced by a unit north pole ( of strength 1 Wb) placed at a point in 

 
 
Magnetisation or Intensity of magnetisation (M) 
 Magnetization may be defined as the process of converting a non magnetic bar into a 
magnetic bar  
 
Magnetic Induction Or Flux Density(B) 
   Magnetic induction or magnetic flux density  in an any material is the number of 
lines of magnetic force passing through unit area perpendicular . Wb/m2  
 
 
Magnetic Susceptibility ( ) 
The ratio of the magnetization to  the field strength  
 
 

Permeability  ( )  
 The ration of the amount of magnetic density B to the applied magnetic field . It is used 
to measure magnetic lines of forces  passing through the material  
 
       
Origin of Magnetic moment  Bohr Magneton  
 When ever a charged particle has an angular momentum , it contributes to permanent 
dipole moment. Consider an hydrogen atom, electron revolving around the nucleus is equal to a 
current loop. Orbital angular momentum arises due this current loop. The electron spin angular 
momentum and nuclear spin angular momentum arises due to spin of the electron and nucleus 
respectively.  
 



 
There are three angular momentum of an atom  

1. Orbital angular momentum of the electron 
2. Electron spin  angular momentum  
3. Nuclear spin  angular momentum 

     Total angular magnetic momentum  
  Bohr Magneton  
 The orbital angular momentum of an electron in an atom can be expressed in terms of 
atomic unit of magnetic moment called  Bohr Magneton.  
  
 
 
 

Classification of the magnetic materials  
The magnetic materials are broadly classified in to two types. They are 1. Those atoms or 

molecules do not have permanent dipole moments and 2. Those atoms or molecules have 
permanent dipole moments even in the absence of  external magnetic field. 

Based on the magnetic moments the materials are classified as  
Diamagnetic materials 
Paramagnetic materials 
Ferromagnetic materials 
Anti ferromagnetic materials 
Ferri magnetic materials 

 
Diamagnetic materials 

Dia magnetic materials has completely filled sub shell electronic structure resultant 
magnetic moment is zero. There are no permanent dipoles and hence the magnetic effect are 
small. When a diamagnetic material is placed in a magnetic field, there will be a small induced 
magnetic moment which always oppose the applied field(accordance with Lenz`s Law). Due to 
this effect the magnetic lines of forces expelled from the materials.  

Mostly the covalent and ionic crystals exhibits the diamagnetic 
properties. The magnetic susceptibility is small and negative and is 
independent of temperature.  

The examples of diamagnetic materials are 1. Covalent materials 
such as  Si,Ge, diamond,  ii) some metals such as copper, silver, gold.     

 
 
 
 
 
 
 
 



Para magnetic materials. 
 
 Atoms or molecules of paramagnetic materials have permanent magnetic moment 
oriented in random direction. The magnetic interaction  between the dipoles try to align themselves but 

the thermal agitation  disturb the alignment. In paramagnetic materials vector sum of magnetic 
moments is zero in the absence of field. 

When an external magnetic field is applied the partial alignment of permanent atomic 
magnetic moments occur 

When a magnetic field is applied , the individual magnetic moment takes the alignment 
along the applied field as shown in figure . The magnetization of a paramagnetic material 
increases with the increase in the applied field. Increase in temperature it reduces the 
magnetization  and destroys the alignment of dipoles with applied field. 

Consider a paramagnetic material placed in non-uniform magnetic field. The paramagnetic 

materials experience a net magnetic force towards the greater field. The magnetic susceptibility is 
small and positive and is dependent on temperature. The susceptibility of the magnetic field is 
given by  

 

Where C is the curie temperature and  T is the temperature in Kelvin scale. 

The magnetization in ferromagnetic material is linear and gets saturated when a large magnetic 
field is applied at low temperature. 

The examples of paramagnetic materials are Mg, gaseous and liquid oxygen , 
ferromagnetic material ( Fe),  and anti-ferromagnetic materials  at high temperature and 

ferromagnetic material (Fe3O4) at high temperature. 



 

Ferromagnetic materials 

Atoms or molecules of ferromagnetic materials have permanent 
magnetic moment. In ferromagnetic materials all the dipoles are aligned 
parallel as shown in the figure if a small value of magnetic field is applied, 
a large value of magnetization is produced. As the ferromagnetic material 
have permanent magnetic dipole moment and the susceptibility is positive. 
The magnetization in ferromagnetic material is non linear and gets 
saturated when a large magnetic field is applied. 

A ferromagnetic materials exhibits two different properties. It behaves as a ferromagnetic 
material below a certain temperature known as ferromagnetic curie temperature. Above the 
temperature it behaves as a paramagnetic material. In the ferromagnetic region, it exhibits well 
known curve known as hysteresis curve as shown in the figure. 

The susceptibility of a ferromagnetic material above the ferromagnetic curie temperature 

is given by  

 Where C is the Curie constant and f  is the ferromagnetic Curie temperature.The 
transition and rare earth metals such as Fe ,Co, Ni ,Gd are the examples of ferromagnetic 
materials.  

Hysteresis in ferromagnetic materials (B-H curve) 

 Below the ferromagnetic Curie temperature (T < f ) Ferromagnetic material exhibits a 
well known curve called hysteresis curve. The variation of  B( magnetic induction) with 
H(applied field) can be represented by a closed curve called hysteresis loop or curve. This refers 
lagging of magnetization behind the magnetising field.  



 If a magnetic field is increased gradually, the flux density increases and it becomes 
maximum. The maximum value of flux density is called saturated magnetization.If the field is 
reversed, the ferromagnetic materials is found to have magnetization in the absence opf external 
field. This is called as retentivity or remanent magnetization (BR) and this property is called as 
spontaneous magnetization. If the field is further reduced the flux density reduces to zero. The 
field requird in the opposite direction  to bring magnetization to zero is called as coercive field or 
coercivity (-Hc). If the field is increased in oposite direction it attains saturation magnetization. If 
an alternating field is applied a closed loop as shown in the figure is obtained. 

 
According to Weiss, a virgin specimen of ferromagnetic material consist of number of 

regions or domai -6 m or above) which are spontaneously magnetized. When magnetic 
field is not applied  the direction of spontaneous magnetization varies from domain to domain.     
The resultant magnetization  may hence be zero or nearly zero.  
     These domains are separated from other by a wall known as domain wall or Bloch wall The 
domain concept  is used to explain the hysteresis property. When an external field is applied two 
possible ways of alignment domain growth are possible one by domain wall motion and other  by 
rotation of domain wall and domain growth is also reversible. Hysteresis curve is explained by 
domain concept. 
 
Antiferromagnetic matériels :   These  are the ferromagnetic materials in which equal no of 
opposite spins with same magnitude such that the orientation of neighbouring spins is in 
antiparallel manner are present. 
Susceptibility is small and positive and it is inversely proportional to the temperature. 
 

+  
the temperature at which anti ferromagnetic material converts into paramagnetic material is 

mperature. 
 
Examples: FeO, Cr2 O3 . 
 
 
 
 



Ferrimagnetic materials: These are the ferromagnetic materials in which equal no of opposite 
spins with different magnitudes such that the orientation of neighbouring  spins is in antiparallel 
manner are present. 
Susceptibility positive and large, it is inversely proportional to temperature 
 

 T> TN 

temperature) Examples : ZnFe2 O4 , CuFe2 O4 

 

 
 
 
 
 
 
 
Soft and Hard magnetic materials 
 
Soft magnetic materials 

 

 
1.   Low remanent magnetization 
2.   Low coercivity 
3.   Low hysteresis energy loss 
4.   Low eddy current loss 
5.   High permeability 
6.   High susceptibility 

 
Examples of soft magnetic materials are 
i) Permalloys ( alloys of Fe and Ni) 
ii) Si  Fe alloy 
iii) Amorphous ferrous alloys ( alloys of Fe, Si, and B) 
iv) Pure Iron (BCC structure) 

 
Applications of soft magnetic materials: Mainly used in electro- magnetic machinery and 
transformer cores. They are also used in switching circuits, microwave isolators and matrix 
storage of computers. 
 
 
 
 



Hard magnetic materials  
The magnetic materials that are difficult to magnetize and demagnetize are called as hard  
magnetic materials. 

1.   High remanent magnetization 
2.   High coercivity 
3.   High saturation flux density 
4.   Low initial permeability 
5.   High hysteresis energy loss 
6.   High permeability 
 
 
 
7.   The eddy current loss is low for ceramic type and large for metallic type. 

 
Examples of hard magnetic materials are, i) Iron- nickel- aluminum alloys with certain 
amount of cobalt called Alnico alloy. ii) Copper nickel iron alloys. iii) Platinum cobalt alloy. 

 
Applications of hard magnetic materials: For production of permanent magnets, used in 
magnetic detectors, microphones, flux meters, voltage regulators, damping devices and 
magnetic separators. 
 
Hard magnetic materials  Soft magnetic materials  

Difficult to magnetize and demagnetize Easy to magnetize and demagnetize 

large hysteresis loop area small hysteresis loop area 

Have large hysteresis loss  Have very low hysteresis loss  

The domain wall movement is difficult and it is 
irreversible in nature  

Domain wall movement is relatively easier. 
Even for small change in the magnetizing 
field ,magnetization changes by large 
amount  

The coercivity and retentivity are large  The coercivity and retentivity are  small  

Magnetostatic energy is large  Magnetostatic energy is  small. 

Small values of permeability and susceptibility  Large values of permeability and 
susceptibility 

Used to make permanent magnets  
Examples- 
Iron-nickel-aluminium alloys  (alnicol) 
Copper nickel iron (cunife)  

Used to make electromagnet 
Examples- 
Fe-Si , Ferrous nickel alloys 
,Ferrites,Garnets  

 
 
 



Sample Questions:  
 
Dielectric Materials: 

1. Explain the phenomenon of electric polarization in dielectric materials?. 
2. Describe in brief  

(a)electronic polarization  
(b) ionic polarization  
(c) Orientation polarization  
(d) Space charge polarisation with diagrams. Also find the total polarizability. 

3. Differentiate between polar and nonpolar dielectrics. 
4.  Drive an expression for internal field in solids and liquids. Or Derive an experession for 

for internal field  by Lorentz method? 
5. Derive Clausius-Mossoti equation. 
6. What are ferroelectric materials? Describe in detail the Ferroelectric hysteresis. 
7. Applications of Dielectric materials. 
8. Derive the relation between dielectric polarization and dielectric constant? 
9. What is its dielectric constant? Explain its importance in dielectric materials? 
10. Which of the following properties are typical for dielectrics? 
11. Write a note on  

 Ferroelectricity   (b) Dielectric constant  (c) internal field in solids 
     12. Discuss the frequency dependence of various polarization processes in dielectric 
materials. 
    13. What is dielectric loss? And also explain Dielectric Breakdown. 
    14. Describe the frequency dependence of dielectric constant. 
     15.  
Magnetic Materials:  

  1. Define magnetization and show that B=  

 2. Explain the classification of magnetic materials in detail? 
  3. Give important features of ferromagnetic materials. Explain the hysteresis curve on the basis 
of domains.  
4. What is hysteresis loss? Explain. 
5. Distinguish between soft and hard magnets. 
6. What is ferromagnetic Curie temperature? Discuss the behaviour of a ferromagnetic material 
below the Curie temperature.  
7. What are ferrites? Explain the magnetic properties of ferrites and mention their industrial 
applications.  
8. Write the importance of hard magnetic materials in engineering applications? 
9. What are the applications of soft and hard magnetic materials? 
 
    
 
 
 



Important formulae: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Problems 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
3.   The dielectric constant of Sulphur is 3.4. Assuming a cubic lattice for its structure, 

calculate the electronic polarizability for Sulphur.  
Given: Sulphur density= 2.07 gm/cc, and atomic  weight =32.07 

 
Given data:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4. Find the polarization produced in a dielectric medium of relative permittivity 15 in 
presence of an electric field of 500 V/m.  

 
             Given data: 

 
 
 
 
 
 
 
 
 
 
 
 
 

1. In a magnetic material, the field strength is 106 Am-1. The magnetic susceptibility of the 
material is 0.5X10-5. Calculate the intensity of magnetization and the flux density of the 
material. 

2. If a magnetic field of 1800Am-1 produces  a magnetic field 3 x 10-5 Wb in an iron bar of 
cross sectional area 0.2cm2, Calculate permeability. 

3. Calculate the saturation magnetization for Ni ferrite. The lattice parameter of a cubic unit 

cell of Ni ferrite is 0.835nm and the magnetic moment per unit cell is 18.4 B . 

                                                                                                    ( B=  
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(Refer Slide Time: 00:21)

We have discussed the mechanism by which the dielectric constant of an insulator 

becomes frequency dependent. So, we represent this by the function - the dielectric 

function epsilon omega. We also noted that this epsilon since this is equal to this square 

as a refractive index, so this frequency dependence also leads to a frequency dependence 

of the refractive index. In particular, this leads to the phenomenon of dispersion and 

absorption of electromagnetic waves when propagating through a medium, which is 

characterized by this dielectric function epsilon omega. So, this is related to the real part 

of the dielectric constant, while absorption is related to the imaginary part which in turn 

leads to an absorption. So, we discuss the theory of this in a dielectric media.



(Refer Slide Time: 02:36)

Just by way of digression, we will just read up back to the case of a metal which we have 

been discussing in some detail earlier and the incidentally want to see how this behavior 

this dispersive and absorptive nature is reflected in the properties of metals, metals as 

you know are highly conducting media. So, the question is, whether there will be any 

change, any difference in the optical behavior of metals in the response to light, because 

these are all know it is a matter of common experience that metals are highly reflective 

in contrast to insulate existences which are not so. We would like to see whether this 

treatment of dispersion and absorption can lead to a detailed understanding of the optical 

behavior of metals. Now one thing we know is that the metals have a very large 

concentration of conduction electrons.



(Refer Slide Time: 03:46)

And therefore, the main properties of metals are usually understood in terms of the 

collective behavior of conduction electrons. In particular, one remembers there is a 

phenomenon called skin effect, which is characteristic of metals and this result in the 

electrons being able to penetrate the metal only up to a short distance named our skin 

layer or skin depth. And this depth is usually given by the root of 2 by mu sigma omega;

mu is the permeability, sigma is the conductivity and omega is the angular frequency.

(Refer Slide Time: 04:57)



So, this is one thing you will keep in mind before discussing this, and going back to our

discussion of the response of a free electron unlike the response of a bound electron in an 

insulator.

(Refer Slide Time: 05:14)

The response of a free electron, in what way is it different from that of the bound 

electron insulator. We will see by writing the equation of motion as before as d square x 

by dt square minus gamma dx by dt, this is the dissipative or resistive term. So, there was 

in addition in the case of a bound electron, there was a natural frequency of oscillation 

which is in the form a restoring force here in the equation of motion. Now in the case of 

a frequency electron, there is no restoring force, there is no natural frequency, it free to 

move under the influence of an applied electric field. So, this term we seen in the 

equation of motion and we have. So, this is the equation of motion in case of a free 

electron in a metal this gamma is the damping constant per unit mass and be seek a 

solution to this differential equation in the usual way by saying that.



(Refer Slide Time: 07:02)

The response is also of the firm of x naught e to the power I omega p the probably a 

phase shift and as plugging this back we get x naught equal to and this for a small then 

gamma is very small compared to one we can just write this as e naught by m omega 

square.

(Refer Slide Time: 07:52)

This will lead to a polarization usual way once we have the displacement we can write 

the polarization and that take this farm and… So, this leads to the frequency dependent 

dielectric constant if the case of a metal following the same procedure we get now this 



dump n e square by m x let me rewrite this. So, that this can be written let n e square by 

m epsilon naught d call this is a term which has the concentration of the electrons the 

electronic charge mass and the permutative of this space. So, this is the constant which is 

characteristic in the metal.

Now, that is take as omega naught is known as last month frequency once you have that 

substitution is simply arrive at a simple relation like this and. So, what is this say. So, it 

the dielectric function of as metal as simply form one minus omega naught square by 

omega square. So, this can be again related to the real and to the imaginary part of the 

dielectric constant this has the form which is shown in the figure. At very low 

frequencies, the epsilon one is a there negative and then it rises to 0 then omega 

approaches the frequency and then you goes up to the value one at high frequencies. So, 

that the behavior which is shown in the figure.

(Refer Slide Time: 10:38)

Next figures show the imaginary part of the dielectric constant which is related to the 

reflectivity. So, in this figure the reflectivity is blocked as a function of a frequency. So, 

this shows that the reflectivity is one at low frequencies which means that at low 

frequency the metal reflects all the incidental electromagnetic radiation except when the 

frequency approaches the plasma frequency.



(Refer Slide Time: 11:17)

Then this behavior is did explain for omega very small compared to omega naught there 

is a negative dielectric constant and a correspondingly the refractive index which is the 

square of the dielectric constant is purely imaginary and I imaginary effective index 

means that the electromagnetic wave is attenuated. So, it does not propagate inside the 

medium inside the metal and it is perfectly reflected which is the reason why a metallic 

surface highly reflective shines. When the frequency approaches the plasma frequency,

the dielectric constant approaches zero and you have a longitudinal plasma wave which 

is propagated in the metal. And for higher frequencies, higher than the plasma frequency,

the dielectric function change the varies from 0 to 1. And this is the usual behavior in 

which they are electromagnetic real propagates to the phase velocity which is given c by 

root epsilon.



(Refer Slide Time: 12:28)

So that is the overall behavior and in the case copper corresponding wave length is about 

120 nanometers. This is in the ultra violet rate that is way copper reflects visible light 

and appears shine. The collective oscillations also take place in the case of the past two 

iomans a diatomic solid that at the which also give rise to plasma executions which are 

known plasmas, but these plasmas occur at much lower frequency because the ion 

masses much larger it is shifted with the infrared range.

(Refer Slide Time: 13:10)



Now, we have in this treatment taken gamma as very small compared to one and 

neglected the damping term. Now if the damping term is not neglected in the frequency 

dependent direct constant then epsilon omega turns out to the complex, and this results 

again in an imaginary ineffective index this corresponds to absorption and hence 

attenuation like the media, because this light is attenuated. There is an energy loss and 

this energy loss may equally well be described in terms of a frequency dependent 

conductivity. So, this is known as the a c is the electrical connectivity then the when the

incident radiation incident wave has a time dependence.

(Refer Slide Time: 14:09)

So, you have an a c response and therefore, this known as the a c electrical conductivity 

in contrast to the d c connected which we have already discussed. If a metal now this can 

be discussed again the same formalism that which we discussed the conductivity in terms 

of the current density which is n e v and this is equal to the sigma e by owns law. And

the for we the velocity is a I omega minus gamma and v equals e on to take it account to 

sign of the charge is the. So, this means that v is and the e gamma minus i omega me. So, 

this can be a rewritten because we know that gamma is by 1 by tau we remember tau is 

the relaxation time for connecting trans. So, this can be written in terms of using this and 

this we can write the sigma the frequency dependent conductivity as sigma naught by 

one minus I omega now. So, that is the expression for the frequency dependent a c 

conductivity of a metal.



(Refer Slide Time: 15:53)

And this again displayed in the next figure where the real and imaginary parts of the 

electrical conductivity of a metal you shown again as a function of frequency are very 

not well and you can see the hole behavior is the different from that the d c conductivity.

(Refer Slide Time: 16:18)

Now, we turned to a discussion of the ionic polarization we discuss. So, for the 

electronic polarization and be now turned to a discussion of the ionic polarization.



(Refer Slide Time: 16:34)

So, in simple alkali halides an example sodium chloride we have sodium plus chlorine 

ions sitting alternately in a diatomic. Now the ionic polarization is again given by and z e 

into x one minus x two where that is the relative net displacement of the ion from the 

equilibrium position are we can write plus and again following the same procedure.

(Refer Slide Time: 17:39)

We arrived a situation where x naught to the equation motion and solid salt it and law

where this omega naught this k by mu and mu is reduce mass of the two ions given by

from this once we know the displacement.



(Refer Slide Time: 18:34)

We can write the ionic polarizability in the ionic polarizability due to the relative lead to 

displacements of the two ions of the form following the same procedure which we 

followed up to now.

(Refer Slide Time: 18:58)

Of course, we have neglected here the individual atomic polarizabilities, which are alpha 

plus and alpha minus therefore, alpha total polarizability this plus this plus this term and 

this lead to the clausius mossotti equation we discussed already for the dielectric function 

an where alpha is given by this and therefore, going to the different limits define.
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For example, the static dielectric constant static omega equal to zero there that will be

and we have in this omega becomes zero.

(Refer Slide Time: 21:07)

So, I have whereas, the high frequency dielectric function which we write as epsilon 

infinity is is one is got in the same way by setting omega equal to infinity there. So, the 

frequency dependent term goes off. So, using these two limit we can write the epsilon 

omega the dielectric constant at any frequencies of omega.



(Refer Slide Time: 21:59)

This take the form that will be plus minus. So, solving for epsilon omega we get? Where 

omega t square, this is something which we one can figure out rather straight forward 

algebra.

(Refer Slide Time: 23:11)

So, what is the meaning of all this we have now returned the frequency-dependent 

dielectric constant at any frequency in terms the high-frequency dielectric constant and 

then the static dielectric constant and have a frequency the defined in this way. So, this 



helps us to visualize what is going on in terms of what I have known in the longitudinal 

and transverse of pick more.

(Refer Slide Time: 24:09)

So, we now go on discuss the longitudinal and transfers optic modes and optic on usually 

they go by the contraction at the abbreviation l o and t o for us. So, in an optic mode of 

an ionic crystal, there is an non varnishing polarization p and associated with this is the 

electric displacement d and when there are no free charger. We have the general relation 

divergent to be vanishes now the apply an alternating field the e equal to e naught 

exponential I minus k or k dot r in general. So, using this, you can see d gives rise to k 

dot d equal to zero, because the divergence is going to taking the divergence means it 

would be replacing this by I k div d equal to zero goes to the equation k dot d equal to 

zero. And what the consequences of this this means that I either d itself is zero or d need 

is perpendicular to k if d is perpendicular to k take care e also is and p also that is the 

significance of this condition div d equal to zero.
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Now, in addition we also have for the electric case the additional relation donation going 

equal to zero.

(Refer Slide Time: 26:45)

Now, curly cord is you know foreign hostility electric field again give rise to the relation 

k cross e equal to zero this means either e itself is zero or e is perpendicular to keep no 

parallel if is all. So, is the and p. So, that these are the two possibilities.



(Refer Slide Time: 27:42)

Now, we can discuss an l o mode a longitudinal in an optic mode in an l o mode what 

happens it is defined by the polarization being parallel to keep. So, if p is parallel to k

naturally this condition is ruled out there for only we have the d equal to zero and 

therefore, e is minus p value where as for the t o mode p is perpendicular to k which 

means that p s parallel to k therefore, e zero. So, this is the main difference between l o 

mode and the t o mode.

(Refer Slide Time: 29:02)



Therefore you have the frequency a the L O mode corresponds to epsilon equal to zero 

in; that means, omega l square plugging back into the expression for the along L O mode 

omega l square is epsilon naught by epsilon in finite a into omega q square. So, this very 

interesting relation between a frequency of a L O mode and the frequency of a t o mode 

goes by a special name lezyne sects tailor this can be experimentally verify because no 

one can measure the static dielectric constant the high frequency the frequency angular 

frequency that the L O and T O modes. Therefore, one can check this relations now this 

in general gives back omega is usually greater than omega t. So, the frequency-

dependent dielectric constant its variation for an ionic crystal is shown ionic the next 

figure.

(Refer Slide Time: 30:32)

And one can see that indeed frequency range between omega l and omega t there is a 

again and negative dielectric constant and on the ionic crystal is highly reflective.
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So, no radiation can propagate in the crystal this frequency region laying between the 

transverse and longitudinal optical modes. Now we can also solve for the dispersion 

relationship for the transfers electromagnetic wave and modes and this gives you 

dispersion relationship and solved gives you a behavior like this. So, the dispersion 

relationship has to branches one laying below omega t and another laying above omega l.

So, you have in the region there are linear regions one mode is clearly found like and one 

is clearly optical.

(Refer Slide Time: 31:49)



So, this excitation is known as polarity dance at at very low frequency is we see omega 

goes as linear and it is levels of the omega t and at highly frequencies about the other 

branch.

(Refer Slide Time: 32:12)

You have again in linear region at very low frequency is it levels off to omega t and 

again you have at high frequencies you have a linear region again it levels of up a 

syntactically to the longitudinal optical.
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So, in the region between omega on in this frequency range you have highly reflected 

behavior and the e m waves are reflected from the surface at the custom. So, you can 

after many reflections only the component of radiation frequencies very close to omega t 

will survive. So, you can have a surviving radiation which is known as a rest trial or in 

English is a German-term which means residual unease. So, you can have a very precise 

to measure the transfers of the pick mode frequency and also produced monochromatic 

radiation gross e to omega t which lies in the intranet. So, these are some vacations of 

this behavior.

(Refer Slide Time: 33:37)

We know all closed is that their discussions brief discussion of very remarkable you kind 

a substances known as b. So, electric's.
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In general all the dielectric material when you subject it to an external electric field have 

sufficiently large magnitude undergoing a small chain in a dimension. So, there is a 

strain generated which is proportional this cure of the electric feed at high enough fields.

(Refer Slide Time: 34:32)

So, this effect is known as an electron structure and this is observed in all the dielectric 

materials at high enough electric fields, but piezo electrics is different. This is a one 

special class electric where there is a significant change in dimension in and subjected to 

an electric field backed in a piezoelectric strain is proportionately to the field. So, they 



strain depending on whether what is the polarity the field you can have a compressive if 

you are extensive string.

(Refer Slide Time: 35:10)

So, this is piezoelectric, now usually the electric effect mass the electrostrictive effect.

Now you can have not only a direct electric effect best, but also in direct reverse effect in 

in which you have a field resulting and their an a electric field resulting from and applied 

strain jacks on the acuity first observed this effect in eighteen eighty and all means, but if 

that. So, that is the reason for the terminology.
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Now, this is interests comes because of the applications apply it well generation all ultra 

sonic it is because it is trained needs used in sauna and then you can also have pressure 

are strain since we I based on director reverse piezoelectric effect you can also have 

actuators these electric actually. So, usually materials belonging to crystal which classes 

these processes and center of symmetry do not exit it piezoelectric effect because the 

linearity. So, it is only the non centro symmetric crystals which produce the piezoelectric 

effect.

(Refer Slide Time: 37:24)

Now, that shown in next couple of figure direct and the indirect is addicting effect I and 

that usually we have already discussed faro electrics all faro electrics display 

piezoelectric. Now in the case of a faro electric material the important characteristic is 

that there exists a spontaneous polarization which can be the reverse by applying the 

external electric field. So, a faro electric material exhibits a piezo effect only when it is 

polarized in this way that is when it is made to process ramnant and polarization the 

polarizing processes is call only the error that.
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What are the material typical examples one as the material which is very well known a 

piezoelectric material is quarts.

(Refer Slide Time: 38:27)

Quat the silicon dioxide usually piezoelectric, but not faro can used in the form of a 

single crystal and when have quat crystal.



(Refer Slide Time: 38:44)

This is use very often in frequency stabilization of as electives appeaser piezoelectric 

quad crystal gives you frequency stabilization.

(Refer Slide Time: 39:08)

This figure shows a single crystal of quad’s in the different cuts type which are implied 

for production of x piezoelectric slices with the different frequencies are shown in the 

figure.
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Now, they evident frequencies can lay in the kilohertz are mega hertz in depending on 

the direction of correct and the thickness of the custom.

(Refer Slide Time: 39:36)

So, that is the oscillator the next material is barium title it we already discussed this 

material it becomes a fero electric head phone under on twenty d b celsius and as I a high 

dielectric constant exhibits a very sensitive piezoelectric.
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Another one is lead zirconate well it is lead zirconate titanate is it is that on. So, this is 

the widely used a piezoelectric it looks at me, but plans to use application now it is also 

used in the polycrystalline farm.

(Refer Slide Time: 40:35)

So, it as an advantage of easy fabrication that is the crystal structure of let us open it paid 

and this there the most widely used piezoelectric material.
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In the last lecture, we discussed the basic mechanism of polarization of a dielectric 

medium, and we saw that in the case of gaseous dielectric gases so we have the relation 

epsilon minus one equal to n alpha this is known as a Clausius equation. Here epsilon is 

the relative dielectric constant, n is the number of dipoles atomic or molecular dipoles

per meter cube, and alpha is the polarisability. We also saw that when we come to a 

condensed phase like a solid or liquid, we saw that this equation is not valid anymore,

because of the presence a local field which is not equal to the applied electric field

because of the presence of an internal field which is also known as the Lorentz field.
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So, it is this E local which has to be used here in this equation, and this leads to a

modification of the Clausius equation in the form and this is known as the Clausius-

Mossotti equation and this is what is valid for solids and liquid dielectrics.

(Refer Slide Time: 02:50)

So, this is the Clausius Mossotti equation which has to used for solid and liquid 

dielectric, and therefore of relevance class.
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Since we also know that the dielectric constant is proportional to n square from em 

theory we can also write this as in this form this is known as the Lorentz relation.

(Refer Slide Time: 03:53)

So, if you measure the refractive index n, this is the reflective index, you can use this 

equation at optical frequencies.
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So, this is the overall situation and we also saw how when we go from the static to the

dynamic situation where the applied field is a function of omega the frequency, so it is an 

alternative field for example, ((Refer Time: 04:36)) field. Then you have the frequency 

dependent dielectric constant, which is basically because of the polarization of various 

entities in the medium. The mechanism of polarizations can be different electronic, ionic

and dipolar or orientation. Last time we discuss these with specific reference to examples 

such as sodium chloride and water and so on. Sodium chloride is the ionic material and 

the ionic contribution will not be able to keep phase, will not be able to follow the past

frequency variations of the applied dielectric field. And therefore, it will not contribute to 

the polarization at high frequencies.

Whereas, the electronic polarization will go all the way will be able to follow the 

polarizations follows the field variations right up to the ultraviolet across the visible 

spectrum. And for example, if you have a polar molecule like water in which there is a 

permanent electric dipole moment then there is an orientation of these dipoles in the 

applied electric field and this also has a certain time constant. And therefore, depending 

on the relaxation of these dipoles, this will also contribute only up to a certain frequency 

such as microwaves.
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So, this is what we saw last time, and all these three together are illustrated in the next 

figure, where we have plotted the polarisability as a function of frequency. Now what we 

see is that at low frequencies, you have the dipolar mechanism, so you have something 

like this.

(Refer Slide Time: 06:43)

So, the epsilon omega function of omega starts from this zero static value and goes down 

and then there is the region here and then region here. So, that is the overall shape of the 

polarisability as a function of frequency. So, this is the dipolar region, dipolar relaxation



this is the ionic and this is the electronic, so that is the overall behavior of the polarized 

ability and we will consider these in some detail next.
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So, let us consider electronic polarization. So, we have a medium in which there are 

bound electrons, the electrons are not free in a dielectric like unlike in a metal. So, they 

are bound electron. So, when the electric field is acts upon them the electrons are only 

slightly displaced by the electric field. So, first let us see how this polarisability may be 

calculated in the static case.

(Refer Slide Time: 08:31)



So, this can be done because we have already seen how in the presence of an applied 

electric field in the case of spherical atom the electronic cloud with the nucleus, the 

nucleus in the presence of an applied electric field how is the nucleus gets displaced 

slightly while the electronic cloud is replaced much more. And so there is the rigid shift 

of this electronic cloud. So, the centers of positive and negative chargers are displaced

relative to each other say by an amount x. So, now, we can use Gauss theorem to 

calculate the polarisability.

(Refer Slide Time: 09:22)

Because Gauss theorem say that is the flux due to an electric field and that is equal to the 

charge which is minus e is the electronic charge times x cube by a cube. Because in both 

cases will be four-third pi x cube and four third pi a cube I am writing four third pi 

cancels of and this is all we are left with. So there we have e x equal to 4 pi epsilon 

naught a cube E, and this is what we call the dipole moment induce dipole moment. And

therefore, we can see from the definitions of the polarisability that the polarisability 

alpha is four pi a cube, so it is proportional to the atomic volume, this is of course, in the 

static situation.
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But when there is a time dependent or an oscillating electric field the response of the 

electron a given electron can be written using the equation of motion which is m d square 

x y d t square that the Mossotti acceleration by Newton’s law plus b times d x by dt. This 

is because the electronic motion always experiences a resistance for its motion. And this 

resist the force by unit moss is the taken to be proportions to this speed or velocity then 

the bound electron has it is bound with a kind of elastically or to the atom with a kind of 

force which can be represented in the simple approximation.

The simplest model by harmonic oscillators of natural frequency x omega naught, so that 

I can write omega naught square x equal to minus v e e to the power of i omega t, so that 

is the equation of motion which is to be solved and be assume, since I am writing only 

the time-dependent here. So, i has so assume that the displacement also has a form e to 

the power i omega d, so that there might be a full shift, but we will just consider this 

omega naught square here is just the k by m where k is the time force constant.
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So, using the, we can immediately write m omega square plus be omega i plus omega 

naught square times x naught equal to minus e naught. So, that x can be written it is not 

in written as well we will write a b by m as b you will just define this by the damping per 

unit moss, so that the simpler left with this. So, immediately we can calculate the dipole 

moment because the dipole moment in this case is minus e x naught at the amplitude of 

the oscillating dipole moment and therefore, this will be and since we have the dipole 

moment the protocol polarization is just n times p.
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So, this is the naught and therefore, this will simply be n is square by m e naught by 

omega holes square minus omega square plus i b omega and therefore, since the relation 

between this is what gives you the epsilon. So this can be written as epsilon minus one,

so that we get the directory constant and because of this factor, i here this becomes a 

complex quantity and therefore, the epsilon is in general complex.

(Refer Slide time: 15:06)

So, let us write it as epsilon prime plus i epsilon double i. So, we have the complex 

dielectric constant. So, the real and imaginary parts are there. So, it can be separated into 

real and imaginary part and we have these are plotted here.
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They are given the real and imaginary parts are given in the equation here and therefore, 

you can see that they are plotted here the real and imaginary parts of the direct constant 

as a function of frequency.

(Refer Slide time: 15:45)

So, the real and imaginary parts look like this. So, I take epsilon prime omega as a 

function of frequency in the neighborhood a resonances then I have something like. So, 

that is the kind of response. So, this is real part of the dielectric constant while imaginary 

part below. So, these two so the imaginary part is the maximum. So, this is what is 



known as a Lorentzian, because these the dispersion part and this is the absorption. So, 

dispersion and absorption the real part in the dielectric constant is a associated with 

dispersion while the imaginary part of the dielectric constant is relative to the absorption.

Now we saw that there are several other mechanism will not consider the ionic in detail.

Now we will instead go to the other case where there are permanent dipoles in the 

system.

(Refer Slide time: 17:15)

So, the medium in the dielectric medium is what is called the polar dielectric for 

example, water water has a large dipole moment.
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So, if you have a polar electric this means that there are permanent electric dipole 

moment as the distinct from induce electric dipoles which persist only as long as there is 

an applied electric field, for example, some typical is abstractions are water carbon 

dioxide. So, a hydrogen chloride chloroform etcetera they are all highly polar dielectric.

So, what happens is that these dipole tend to orient themselves orient in an applied field.

So, it is this orientation which gives you the polarization. In this cases because if do 

orient more as a orient more and more like get aligned alone the electric field there is the

the polarization increases. Now this orientation tendency is opposed by the thermal 

energy this is some as thermal energy which tends to restoral the disorder, which tends to 

thermal energy is always lens leads to disorder the dipoles.

So, there is a ordering influence due to the applied field and which completes with these 

this ordering influence the equilibrium polarization at any given temperature at a given 

temperature that is what determine the dielectric constant. So, this can be easily 

calculated and this is the temperature dependent process unlike the induce dipole 

mechanism or the electronic ionic mechanism. So, this is the temperature dependent 

because the thermal energies more. So, there is a temperature dependence for the 

orientational polarized ability. So, this is now the orientational contribution to the 

polarized ability can be separated from the electronic for ionic contribution because you 

measure the dielectric constant as a function of temperature a different temperature and 



then the temperature dependent part comes from the orientation of mechanism. So, let us

consider this mechanism, we have let us write down what is the polarization.

(Refer Slide time: 20:35)

The polarization is P - it is a thermal average statistical average which is n times the 

individual average of the individual dipole moment. Where this average p is integral p

cos theta, this is the projection of the dipole moment of the permanent dipole in the 

direction of the applied field times. There is the usual Maxwell Boltzmann factor 

statistical factor times b f cos theta zero to pi zero to one minus one point to minus one

exponential p e cos theta by k b t and d of cos theta.
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Now this can be evaluated you get this as this is the functional dependent this function is 

usually known as the langevin function l of a.

(Refer Slide time: 22:19)

Now, a is p E by k B T for a tend into zero that is p E by k B T tends to zero that is in 

small applied fields at very high temperatures P goes to p square by 3 k B T times E. So, 

the orientation of all receptivity is just is square by 3 k B T. And therefore, the total 

polarization is p equals. So, that is why orientational polarization as of and it has an 

inverse temperature of one temperature dependence for the absolute temperature T. So, 



you have a dielectric susceptibility which varies inversely with the temperature and like 

the electronic ionic contribution.

So, if you measure the dielectric constant as a function of temperature and plot it as of 

versus 1 by T, you will get a straight line for the orientational contribution which may 

therefore, be separate. Now this alignment, which we talk about these the equilibrium 

alignment of the dipoles is not of course, an instantaneous process and is govern by a 

relaxation time. So, there is a time dependent polarization which is due to the alignment 

of these dipoles this time dependence can be written.

(Refer Slide time: 24:03)

In terms of the time dependence of the polarization can be written as p equilibrium minus 

p by tau where tau is a characteristic relaxation time for the dipoles to get align and p 

equilibrium the equilibrium polarization. So, if you have this we can write this as i 

omega p therefore, this give you the rate equation which is p equal to p equilibrium by 

one minus i tau. And so one plus and this is p equilibrium one minus i omega tau by one 

plus omega square holes square. So, again you can see that the equilibrium polarization 

is complex and therefore, the relative dielectric constant due to this mechanism is also a 

complex quantity again the real part of which is the dispersive part and the imaginary 

part is the absorption. So, this is the contribution which we showed in the figures.
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We now come to a very important related concept namely that of ferroelectric phase 

transition. We talk at the beginning of this lecture course about thermodynamic phase 

transition such as the gas to liquid transition and then the liquid to solid phase transitions.

(Refer Slide time: 25:56)

We are going to talk about another kind of phase transition, which takes place in the 

dielectric material which is known as the ferroelectric phase transition. So, an important 

this is an important class of phase transitions which go which take the material from a 

para electric to a ferroelectric this at low-temperature. For example, variant barium 



titanate is a very well-known ferroelectric material which has a ferroelectric phase 

transition temperature in the neighborhood of 120 degrees Celsius. So, belong hundred 

and twenty degrees Celsius it is ferroelectric about this it is a paraelectric. What do you 

mean by a ferroelectric material a ferroelectric material is characterized by existence of 

what is known as a spontaneous polarization there is a spontaneous polarization normally 

till now we have been talking about situation where an applied electric field.

Hence to create a polarization induce a polarization or orient the dipoles to produce a 

polarization net polarization. So, here these an entirely different situation where even in 

the absence of an applied electric field there is a polarization a polarization is present 

even when there is no applied electric field. So, it is call spontaneous polarization 

ferroelectrics are materials which are characterized with the existence of a spontaneous 

polarization whereas, a para electric is one in the there is no spontaneous polarization 

and you need an applied electric field in or at create a polarization now this ferroelectric 

behavior may be qualitatively understood from the Clausius Mossotti relationship.

Now if you take this we have something like so this let you recall this this is the cloud of 

Clausius Mossotti relation and look at if you look at the denominator this denominator 

will become zero than n alpha equal to three then there’s become zero and therefore, the 

a dielectric constant singular it blows up. So, this means there would be a non- zero 

polarization even than the field is zero this is known as the polarization catastrophe 

where they are dielectric constant the polarization blows up and goes to infinity because 

of this behavior. So, when this condition is made.
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So, this behavior is illustrated in the next picture where the ferroelectric phase transition 

is shown in barium titanate at 120 degree Celsius. So, there is a polarization catastrophe.

(Refer Slide time: 29:57)

So, above the transition temperature of a 120 degrees Celsius barium titanate exist in the 

cubic phase. This structure is a cubic structure which is known as the perovskite structure

above where a conceive cool it below 120 degrees Celsius. There is a structural phase 

transition the structure the crystal structure changes along with the ferroelectric phase 



transition this becomes a tetragonal structure below 120 Celsius. So, and then

subsequently becomes some monoclinic rhombohedral.

(Refer Slide time: 31:04)

So, this is shown in a this picture the cubic ferrite structure a barium titanate is shown in 

the figure. This is the structure of the barium titanate the titanium ions or at the centre of 

this cubic cell and surrounded by an oxygen atoms and then the barium atom occupy the 

corners of this cube.
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So, this is the structure at high temperatures, but once you cold the low 120 Celsius. This 

goes interior tetragonal structure because the titanium ion which is at the body centre of 

the cubic unit cell get displace and because of these displacement there is a spontaneous 

polarization this is the mechanism of the buildup of the spontaneous polarization in the 

ferroelectric.

(Refer Slide time: 32:14)

Now, the general features of a ferroelectric phase transition understood in terms of 

landau theory of phase transition the general approach of landau theory is to define an 

order parameter. So, this is the crucial feature of the landau theory of phase transition 

defined an order parameter the order parameter can be any physical quantity which is 

zero or about the transition temperature and non-zero below. So, that the general

definition of the order parameter in this presence case of a ferroelectric material the order 

parameter is the spontaneous polarization; obviously, the there is a no spontaneous 

polarization above t c the transition temperature and heat the spontaneous polarization 

existent therefore, is nonzero below t c. So, that is the order paramagnetic in this case the 

next step in the landau theory which is a thermodynamic theory.

This thermodynamic theory always says why should there be a phase transition, the 

phase transition takes place and the change there is a change in phase in this case the 

structural phase. And therefore, the ferroelectric phase because of a lowering of the free 

energy below T c. So, the free energy becomes lower in the order phase and therefore, 



this lowering as the free energy favors the existence of the order phase over the disorder 

phase. So, that is the basic explanation thermodynamic information given by the landau 

theory. So, how do you find this. So, you expand the free energy in powers of the order 

parameter in this case these spontaneous polarization.

So, we write this is the gift free energy g which is written as G naught plus alpha P plus

beta by 2 p square plus etcetera P square meter the power four etcetera terms in p p cube 

etcetera do not exist because this as such as favorite state and central symmetry. And

therefore, order powers will be vanished under the operation of the centre inversion 

therefore, only even powers p square p to the power four etcetera are there; all for beta 

are constants which have to be determine by the minimization of the ferroelectric.

(Refer Slide time: 35:50)

So, the entire exercise is to minimize this free energy with respect to variations in the 

order parameter changes in p. So, if i do that this is the free energy deference and this is 

minimize by taking the differential coefficient with respect to p and that will be alpha 

plus alpha p plus beta b cube neglecting the higher order terms was etcetera which are 

neglect. So, this is the derivative all the free energy difference with respect to p and we 

set this equal to zero for a minimum this give me alpha equal to minus beta p square or 

the square is minus alpha by beta. So, the minimum is characterized by a spontaneous 

polarization, which is minus alpha by beta. So, this is the order parameters. So, we 

expected to be zero above t c and nonzero below t c. So, in order that this should happen 



and p will be real. So, p square should be a positive definite quantity therefore, we take 

alpha to be less than zero for t less than t c alpha is negative, so that minus alpha by beta 

is positive when beta is also positive.

(Refer Slide time: 37:45)

And the corresponding free energy difference when we substitute this delta G equal to G

minus G naught equal to alpha P plus beta by 2 alpha P square plus beta by 2 P to the 

power 4. And substituting p square equal to minus alpha by beta for the minimization 

condition, we get this to be alpha time minus alpha or mod alpha by beta plus beta by 

two into alpha square by beta square. So, this gives me alpha square by beta minus plus 

this. So, this will be I can write this as alpha by 2 into minus alpha. So, this becomes 

minus alpha square plus alpha square by two beta which gives me minus alpha square 

by… So, one can see that there is a reduction in the free energy below T c. So, the free 

energy is lower we expect provided beta is positive and alpha now can be taken to be a 

function of T.

So, alpha can be written as alpha naught times T minus T c, so linear function of the 

temperature. So, we take these to be a alpha changes sign at t c and become positive 

making the para electric very energetically more stable at higher temperatures. So, the 

simplest analytical form is this and therefore, we have equal to zero for t equal to t c and 

p equal to zero for t greater than t c and equal to plus minus mode alpha by beta for t less 

than this to the power half taking square root for p square. So, the landau theory thus 



predicts a spontaneous polarization which goes as alpha to the power half or p goes as T 

minus T c or T c minus T, so half so the temperature dependence predicted by the landau 

theory for the spontaneous polarization.
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And above T c the para dielectric susceptibility goes as T greater than T c, the 

susceptibility goes as two alpha naught into T c, T minus T c as we conjunct readily. So, 

this is the temperature dependence for the susceptibility above the phase transition and 

this is the temperature dependence predicted for this spontaneous temperature 

dependence as the spontaneous polarization below T c. So, these are features which have 

been verify. Ferroelectric compounds in general fall into three main classes. One is the 

perovskite such as the barium, titanate, which you have discussed. Then there is another 

family, which is called the roselle salt type compound. And then a third class for which 

the prototype is the potassium dihydrogen phosphate type known as hydrogen bound it 

ferroelectrics. Dielectric in which adjacent dipoles are lined up not parallel to each other

as in this case, but anti parallel to each other also exhibit a shop discontinuity in the 

relative dielectric constant at the transition temperature, these are known as anti

ferroelectrics. In the next lecture, we will consider piezoelectric another important class 

of dielectric material.


